首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of metal ions to bovine factor IX   总被引:1,自引:0,他引:1  
The binding isotherms of Ca2+ and Mn2+ to bovine factor IX have been determined at pH 6.5 and pH 7.4, at 25 degrees C. At pH 7.4, at least 2 strong Ca2+ sites, with an average KDISS of 0.1 +/- 0.02 mM, are found. An additional 10 to 11 weaker Ca2+ binding sites, with an average KDISS of 1.3 +/- 0.2 mM are noted, at high levels of Ca2+. At pH 6.5, again at least 2 strong Ca2+ sites on factor IX are evident, with an average KDISS of 0.11 +/- 0.02 mM; but slightly fewer (7 to 8) weaker sites, with an average KDISS of 1.9 +/- 0.3 mM, are obtained. Qualitatively, the binding of Mn2+ to bovine factor IX appears similar to that of Ca2+. At pH 6.5, approximately 2 strong Mn2+ binding sites, with an average KDISS of 13 +/- 1.5 micrometer, and an additional 5 to 6 weak sites, with an average KDISS of 160 +/- 15 micrometer, are present. Manganese does not completely displace Ca2+; and Ca2+ does not completely displace Mn2+ from their respective binding sites. On the other hand, Tb3+ and Sm3+ readily displace Ca2+, at pH 6.5, from its sites on factor IX. The rate and extent of activation of bovine factor IX, by bovine factor XIa, is dependent on the Ca2+ concentration, up to concentrations of Ca2+ which saturate its effect on the system. Substitution of Sr2+ for Ca2+ leads to approximately 50% of the maximum rate of factor IXa formation, and final yield of factor IXa, in this activation system. Manganese does not substitute for Ca2+ in this activation, but does inhibit the stimulatory effect of Ca2+. Both Tb3+ and Sm3+ are effective inhibitors of Ca2+ in factor IX activation by factor XIa.  相似文献   

2.
The interactions of bovine factor IX, its activation intermediate, Factor IX alpha, and its activation products, Factor IXa alpha and Factor IXa beta, with phospholipid vesicles, of mean radius of approx. 30 nm, containing various amounts of phosphatidylserine (PS) and phosphatidylcholine (PC), have been examined. For Factor IX, Factor IX alpha, Factor IXa alpha and Factor IXa beta, the dissociation constants, at saturating levels of Ca2+, are independent of the PS concentration in the vesicle after levels of 20-30% (w/w) have been reached, and attain minimum values of approx. 1.7, 1.7, 0.7 and 1.0 microM, respectively, with vesicles containing 50% PS. The amount of protein bound per vesicle particle is independent of the PS content, above 20% PS, for Factor IX and Factor IXa beta, with values of approx. 995-1197 and 1128-1566 molecules/vesicle, respectively. With Factor IX alpha, a dependence on the amount of protein bound with the content of PS is seen, which ranges from 338 to 619 molecules/vesicle with membranes containing 30-50% PS. For Factor IXa alpha, no regularity is noted and a range of 583-1083 molecules of protein/vesicle is observed with the systems employed. Examination of the radii of the proteins on the vesicle demonstrates that Factors IX alpha and IXa alpha occupy considerably more of the surface than do Factors IX and IXa beta, suggesting that a reason for the decreased number of binding sites for the former two proteins on the vesicle may be related to their greater surface spatial requirements.  相似文献   

3.
A simple centrifugation technique has been developed to study the interaction of human coagulation Factors IXa and X with phospholipid membranes. In the presence of Ca2+, equimolar phosphatidylserine/phosphatidylcholine membranes form tight complexes with Factor X (KD = 2.8 X 10(-8) M); the KD is independent of the phospholipid concentration. Binding sites are available for about 2 mmol of Factor X/mol of phospholipid. Factor IXa has a slightly higher affinity for the phospholipid membrane (KD = 1.2 X 10(-8)M), and competes with Factor X for binding. The experimentally observed competition between Factor X and Factor IXa is in agreement with a model that describes the binding of two distinct ligands to a single class of independent binding sites.  相似文献   

4.
Endothelium provides a specific binding site for Factor IX/IXa which can propagate activation of coagulation by promoting Factor IXa-VIII-mediated activation of Factor X. In this report the endothelial cell Factor IX/IXa binding site has been identified and the coagulant function of the receptor blocked. Studies using [3H]Factor IX derivatized with the photoaffinity labeling agent N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH) and cultured bovine endothelial cells demonstrated cross-linking to a trypsin-sensitive cell surface protein of Mr approximately equal to 140,000. Immunoprecipitation of metabolically labeled endothelium with Factor IX derivatized with the cleavable cross-linking agent N-succinimidyl(4-azidophenyl)-1,3'-dithiopropionate and antibody to Factor IX demonstrated the endothelial cell origin of the Mr 140,000 cell surface protein. Blockade of the Factor IX/IXa binding protein by covalently linking SANPAH-5-dimethylaminonaphthalene-1-sulfonyl-Glu-Gly-Arg-Factor IXa or SANPAH-Factor IX prevented both specific Factor IXa binding and effective Factor IXa-VIII-mediated activation of Factor X on endothelium. Following extraction of endothelium with detergents, Factor IX/IXa binding activity was solubilized and could be assayed using a polyvinyl chloride plate binding assay. Western blots of cell extracts demonstrated binding of 125I-Factor IX at Mr approximately equal to 140,000 which was blocked by excess Factor IX, but not antisera to Factor VIII, von Willebrand factor, alpha 2-macroglobulin, or epidermal growth factor receptor. These data indicate that endothelium provides a distinct binding site for Factor IX/IXa consisting, at least in part, of a membrane protein which can modulate the coagulant activity of Factor IXa on the cell surface.  相似文献   

5.
Comparative interactions of factor IX and factor IXa with human platelets   总被引:10,自引:0,他引:10  
Both factor IX and factor IXa were bound to gel filtered platelets in the presence of CaCl2 (2-20 mM) and human alpha-thrombin (0.06-0.2 units/ml) with maximal binding occurring in 10-20 min at 37 degrees C, and rapid reversibility was observed when unlabeled ligands were added in 100-fold molar excess. Competition studies with various coagulation proteins revealed that neither factor XI nor high molecular weight kininogen, at 300-fold molar excess, could compete with 125I-labeled factor IXa for binding sites on thrombin-activated platelets, whereas prothrombin and factor X, in 450-fold molar excess, could displace approximately 15 and 35%, respectively, of bound factor IXa in the absence of added factor VIII. Analysis of saturation binding data in the presence of CaCl2 and thrombin without factors VIII and X indicated the presence of 306 (+/- 57) binding sites per platelet for factor IX (Kd(app) = 2.68 +/- 0.25 nM) and 515 (+/- 39) sites per platelet for factor IXa (Kd = 2.57 +/- 0.14 nM). In the presence of thrombin-activated factor VIII (1-5 units/ml) and factor X (0.15-1.5 microM), the number of sites for factor IX was 316 (+/- 50) with Kd = 2.44 (+/- 0.30) nM and for factor IXa 551 (+/- 48) sites per platelet (Kd = 0.56 +/- 0.05 nM). Studies of competition for bound factor IXa by excess unlabeled factor IX or factor IXa, and direct 125I-labeled factor IXa binding studies in the presence of large molar excesses of factor IX, confirmed the conclusion from these studies that factor IX and factor IXa share approximately 300 low-affinity binding sites per thrombin-activated platelet in the presence of Ca2+ and in the absence of factor VIII and factor X, with an additional 200-250 sites for factor IXa with Kd(app) similar to that for factor IX. The presence of factor VIII and factor X increases by 5-fold the affinity of receptors on thrombin-activated platelets for factor IXa that participate in factor X activation.  相似文献   

6.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

7.
The binding isotherm of Ca2+ to bovine coagulation Factor VII has been examined at 25°C, and pH 7.4, by equilibrium ultrafiltration. The simplest model which describes the nonlinear isotherm obtained assumes that two strong Ca2+ sites exist, with an average KD of 0.1 ± 0.04 mm, and at least four weaker sites, with an average KD of 1.7 ± 0.3 mm. Concomitant with Ca2+ interaction, the intrinsic steady state fluorescence of bovine Factor VII decreases. Approximately 80% of the total fluorescence alteration occurs as a consequence of saturation of the two strong Ca2+ sites. The remainder of the fluorescence decrease takes place upon the total binding of three to four Ca2+ sites. This result indicates that an alteration in the environment of a tryptophan residue(s) occurs upon binding of Ca2+ to bovine Factor VII.  相似文献   

8.
Binding of coagulation factors IX and X to the endothelial cell surface   总被引:13,自引:0,他引:13  
Bovine coagulation factors IX and X bind to independent sites on bovine aortic endothelial cells. Binding studies with cells maintained serum-free showed that there are at least two classes of binding sites for factor IX and factor X with a dissociation constant of 4.9 x 10(-9) M and 2.1 x 10(-8) M for the respective high affinity sites. Ca+2 was required for specific binding and was reversed by addition of EDTA or EGTA. Competition experiments showed that factor IX and factor IXa bind to the same sites, which are different from the factor X binding sites. Neither binding of factor IX or factor X is inhibited by addition of prothrombin or protein C. Indirect immunofluorescence of factor IX indicated that binding was diffuse on the cell surface.  相似文献   

9.
Intrinsic versus extrinsic coagulation. Kinetic considerations.   总被引:3,自引:1,他引:2       下载免费PDF全文
A study to compare the kinetics of activation of factor IX by Factor XIa/Ca2+ and by Factor VIIa/tissue factor/Ca2+ has been undertaken. When purified human proteins, detergent-extracted brain tissue factor and tritiated-activation-peptide-release assays were utilized, the kinetic constants obtained were: Km = 310 nM, kcat. = 25 min-1 for Factor XIa and Km = 210 nM, kcat. = 15 min-1 for Factor VIIa. The kinetic constants for the activation of Factor X by Factor VIIa/brain tissue factor were: Km = 205 nM, kcat. = 70 min-1. Predicted rates for the generation of Factor IXa and Factor Xa were obtained when human monocytic tumour U937 cells (source of tissue factor) and Factor VIIa were used to form the activator. In other experiments, inclusion of high-Mr kininogen did not increase the activation rates of Factor IX by Factor XIa in the presence or absence of platelets and/or denuded rabbit aorta. These kinetic data strongly indicate that both Factor XIa and Factor VIIa play physiologically significant roles in the activation of Factor IX.  相似文献   

10.
The role of the cofactors Ca2+ and phospholipid in the activation of human Factor X by Factor IXa was investigated. By use of a sensitive spectrophotometric Factor Xa assay, it was demonstrated that human Factor IXa can activate Factor X in the absence of cofactors. The presence of Ca2+ as the only cofactor resulted in a 7-fold stimulation of the Factor Xa formation. Kinetic analysis of the Ca2+-stimulated reaction showed that the apparent Km of Factor X was 4.6 microM, whereas the apparent Vmax. for Factor Xa formation was 0.0088 mol of Xa/min per mol of IXa. The presence of phospholipid as the only cofactor had no effect on the rate of Factor Xa formation. However, a several-hundred-fold stimulation was observed when Ca2+ and phospholipid were present in combination. The activation of Factor X in the presence of Ca2+ and phospholipid was found to be kinetically heterogeneous, involving both phospholipid-bound and free reactants. Quantitative data concerning the phospholipid binding of Factors IXa and X were used to study the relation between the rate of Factor Xa formation and the binding of enzyme and substrate to the phospholipid membrane. The results support the hypothesis that phospholipid-bound Factor X is the substrate in the phospholipid-stimulated reaction; however, phospholipid-bound and free Factor IXa seem to be equally efficient in catalysing the activation of phospholipid-bound Factor X.  相似文献   

11.
Factor IX Niigata is a mutant factor IX responsible for the moderately severe hemophilia B in a patient who has a normal level of factor IX antigen with reduced clotting activity (1-4% of normal). We reported previously that the purified mutant protein could be converted to the factor IXa beta form by factor XIa/Ca2+ at a rate similar to that in the case of normal factor IX, but the resulting mutant factor IXa beta could not activate factor X in the presence of factor VIII, Ca2+, and phospholipids (Yoshioka, A. et al. (1986) Thromb. Res. 42, 595-604). In the present study, we analyzed factor IX Niigata at the structural level to elucidate the molecular abnormality responsible for the loss of clotting activity. Amino acid sequence analysis of a peptide obtained on lysyl endopeptidase digestion, coupled with subsequent SP-V8 digestion, demonstrated that the alanine at position 390 was substituted by valine in the catalytic domain of the factor IX Niigata molecule.  相似文献   

12.
K+ interactions with a rat brain (Na+ + K+)-dependent ATPase and the associated K+-dependent nitrophenyl phosphatase activity were examined. Classes of sites for K+ were distinguished, initially, on the basis of affinity estimated by kinetic analysis in terms of KO.5 (the concentration for half-maximal activation), and by K+-accelerated enzyme inactivation by F-minus, which permits evaluation of a dissociation constant for K+, KD. Moderate-affinity sites ("alpha sites"), with a KD near 1 mM, were demonstrable for the phosphatase activity and for the "free" enzyme. High-affinity sites ("beta sites"), with a KD near 0.1 mM, were seen for the overall ATPase activity and under conditions in which enzyme phosphorylation by substrate also occurs. Further differentiation between alpha and beta sites was made in terms of (i) the characteristic changes in affinity with pH, and (ii) the efficacy of Li+ relative to K+, Rb+, Cs+, and Tl+ at these two classes of sites. Low-affinity sites ("gamma sites") through which K+ inhibits enzymatic activity were also detectable, with a KD around 140 mM. These data are incorporated into a model for the reaction sequence to accommodate both transport processes and certain K+/ATP antagonisms.  相似文献   

13.
The binding of calcium to human plasma fibronectin has been measured by equilibrium dialysis at 25° in 0.1 M NaCl 50mM Tris HCL, pH 7.4. Curve fitting of the binding data indicates that fibronectin has two strong calcium binding sites per chain (Mr 220,000), KD = 1.3 mM and approximately 12 weak sites, KD = 2.3 mM. No significant displacement of bound calcium by magnesium was observed at magnesium concentrations up to 1 mM. Calcium binding to a pair of tryptic fragments of fibronectin (Mr ? 160,000 and 180,000) that bind to gelatin has also been investigated. These fragments have a single class of calcium binding sites, with 2.2 sites per chain, KD = 1.1 mM. Negligible calcium binding to tryptic fragments derived from other regions of the fibronectin molecule was observed.  相似文献   

14.
We have examined the calcium-binding properties and metal ion-dependent conformational changes of proteolytically modified derivatives of factor IX that lack gamma-carboxyglutamic acid (Gla) residues. Equilibrium dialysis experiments demonstrated that a Gla-domainless factor IX species retained a single high affinity calcium ion-binding site (Kd = 85 +/- 5 microM). Ca2+ binding to this site was accompanied by a decrease in intrinsic fluorescence emission intensity (Kd = 63 +/- 15 microM). These spectral changes were reversed upon the addition of EDTA. Titration with Sr2+ resulted in little change in fluorescence intensity below 1 mM, while titration with Tb3+ caused fluorescence changes similar to those observed with Ca2+. Tb3+ and Ca2+ appear to bind to the same site because tryptophan-dependent terbium emission was reduced by the addition of Ca2+. Similar results were obtained with a Gla-domainless factor IX species lacking the activation peptide. Gla domain-containing factor IX species exhibited fluorescence changes similar to those of the Gla-domainless proteins at low Ca2+, but an additional structural transition was found at higher Ca2+ concentrations (apparent Kd greater than 0.8 mM). Thus, the conformations of factor IX proteins are nucleated and/or stabilized by calcium binding to a high affinity site which does not contain Gla residues. The binding of Ca2+ to lower affinity Gla domain-dependent metal ion-binding sites elicits an additional conformational change. The strong similarities between these results and those obtained with protein C (Johnson, A. E., Esmon, N. L., Laue, T. M. & Esmon, C. T. (1983) J. Biol. Chem. 258, 5554-5560), coupled with the remarkable sequence homologies of the vitamin K-dependent proteins, suggest that the high affinity Gla-independent Ca2+-binding site may be a common feature of vitamin K-dependent proteins.  相似文献   

15.
Prolixin-S is a salivary anticoagulant of the blood-sucking insect, Rhodnius prolixus, and known as an inhibitor of the intrinsic Xase. We report here its inhibitory mechanisms with additional important anticoagulation activities. We found prolixin-S specifically bound to factor IX/IXa in the presence of Ca(2+) ions. Light scattering and surface plasmon resonance studies showed that prolixin-S interfered with factor IX/IXa binding to the phospholipid membrane, indicating that prolixin-S inhibit Xase activity of factor IXa by interference with its Xase complex formation. Furthermore, reconstitution experiments showed that prolixin-S binding to factor IX strongly inhibited factor IXa generation by factor XIa. We also found that prolixin-S inhibited factor IXa generation by factor VIIa-tissue factor complex and factor IXalpha generation by factor Xa. These results suggest that prolixin-S inhibits both intrinsic and extrinsic coagulations by sequential inhibition of all coagulation pathways in which factor IX participates. It was also suggested that prolixin-S may bind to factor IX/IXa by recognizing conformational change of the Gla domain induced by Ca(2+) binding.  相似文献   

16.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

17.
The published activation site sequences of bovine factors IX and X have been utilized to synthesize a number of peptides specifically designed respectively as substrates for bovine factors XIa and IXa beta. The substrates contain a fluorophore (2-aminobenzoyl group, Abz) and a quenching group (4-nitrobenzylamide, Nba) that are separated upon enzymatic hydrolysis with a resultant increase in fluorescence that was utilized to measure hydrolysis rates. Factor XIa cleaved all of the peptides bearing factor IX activation site sequences with Abz-Glu-Phe-Ser-Arg-Val-Val-Gly-Nba having the highest kcat/KM value. The kinetic behavior of factor XIa toward the synthetic peptide substrate indicates that it has a minimal extended substrate recognition site at least five residues long spanning S4 to S1' and has favorable interactions over seven subsites. The hexapeptide Abz-Glu-Phe-Ser-Arg-Val-Val-Nba was the most specific factor XIa substrate and was not hydrolyzed by factors IXa beta or Xa beta or thrombin. Factor IXa beta failed to hydrolyze any of the synthetic peptides bearing the activation site sequence of factor X. This enzyme slowly cleaved four hexa- and heptapeptide substrates with factor IX activation site sequences extending from P4 or P3 to P3'. Factor Xa beta poorly hydrolyzed all but one of the factor XIa substrates and failed to cleave any of the factor IXa beta substrates. Thrombin failed to hydrolyze any of the peptides examined while trypsin, as expected, was highly reactive and not very specific. Phospholipids had no effect on the reactivity of either factors IXa beta or Xa beta toward synthetic substrates. Both factor IXa beta and Xa beta cleaved the peptide substrates at similar rates to their natural substrates under comparable conditions. However the rates were substantially lower than optimum activation rates observed in the presence of Ca2+, phospholipids, and protein cofactors. In the future, it may be useful to investigate synthetic substrates that can bind to phospholipid vesicles in the same manner as the natural substrates for factors IXa beta and Xa beta.  相似文献   

18.
Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. We identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate factor X in the presence of factor VIII, phospholipids, and Ca2+, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311----Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.  相似文献   

19.
Previous studies have demonstrated a Factor IX and IXa binding site on the endothelial cell surface for which both the zymogen and enzyme compete with equal affinity. In this report, we demonstrate that the affinity of Factor IXa, but not Factor IX, for the cell surface is increased in the presence of both Factors VIII and X. When Factor Xa formation was studied in the presence of saturating concentrations of Factors VIII and X, the half-maximal rate was observed at a Factor IXa concentration of 151 +/- 12 pM. Active site-blocked Factor IXa, 5-dimethylaminonaphthalene-1-sulfonyl-Glu-Gly-Arg-Factor IXa, was a more effective inhibitor of Factor X activation (Ki = 124 pM) than was Factor IX (Ki = 3.0 nM). Radioligand binding studies carried out in the presence of Factors VIII and X confirmed the presence of a selective endothelial cell Factor IXa binding site with Kd = 127 +/- 27 pM. In contrast, when Factor IXa binding was studied in the absence of other coagulation factors, or in the presence of Factor VIII (thrombin-activated or unactivated) alone, this new high affinity site was not observed. Competitive binding studies indicated that Factor IXa was 12 times more effective as an inhibitor of Factor IX-endothelial cell binding in the presence of Factors VIII and X. Consistent with the increased affinity of Factor IXa binding in the presence of factors VIII and X, cell-associated Factor IXa coagulant activity decayed 7 times more slowly in the presence of these coagulation factors. These results demonstrate selective Factor IXa-endothelial cell binding in the presence of Factors VIII and X, suggesting this interaction could be a physiologic occurrence.  相似文献   

20.
Matrix metallopeptidase-12 (MMP-12) binds three calcium ions and a zinc ion, in addition to the catalytic zinc ion. These ions are thought to have a structural role, stabilizing the active conformation of the enzyme. To characterize the importance of Ca2+ binding for MMP-12 activity and the properties of the different Ca2+ sites, the activity as a function of [Ca2+] and the effect of pH was investigated. The enzymatic activity was directly correlated to calcium binding and a Langmuir isotherm for three binding sites described the activity as a function of [Ca2+]. The affinities for two of the binding sites were quantified at several pH values. At pH 7.5, the KD was 0.1 mM for the high-affinity binding site, 5 mM for the intermediate-affinity binding site and >100 mM for the low-affinity binding site. For all three sites, the affinity for calcium decreased with reduced pH, in accordance with the loss of interactions upon protonation of the calcium-co-ordinating aspartate and glutamate carboxylates at acidic pH. The pKa values of the calcium binding sites with the highest and intermediate affinities were determined to be 4.3 and 6.5 respectively. Optimal pH for catalysis was above 7.5. The low-, intermediate- and high-affinity binding sites were assigned on the basis of analysis of three-dimensional-structures of MMP-12. The strong correlation between MMP-12 activity and calcium binding for the physiologically relevant [Ca2+] and pH ranges studied suggest that Ca2+ may be involved in controlling the activity of MMP-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号