首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of anionic sites in the lamina rara externa (LRE) of rat glomerular basement membrane (GBM) was studied in three dimensions by a quick-freezing and deep-etching method using polyethyleneimine (PEI) as a cationic tracer. Results were compared with those obtained with conventional ultrathin sections examined by transmission electron microscopy. Examination with the quick-freezing and deep-etching method was done without (group 1) or with (group 2) contrasting/fixation with a phosphotungstic acid and glutaraldehyde mixture and post-fixation with osmium tetroxide, which were necessary for visualization of PEI particles by conventional ultrathin sections. Using the quick-freezing and deep-etching method without following contrasting/fixation and post-fixation (group 1), many PEI particles were observed to decorate around fibrils, which radiated perpendicularly from the lamina densa to connect with the podocyte cell membrane. The arrangement of PEI particles was not as regular as that previously reported using conventional ultrathin sections. In contrast, the tissue that was studied with quick-freezing and deep-etching followed by contrasting/fixation and post-fixation (group 2) showed a shrunken appearance. The arrangement of PEI particles was regular (about 20 particles/1000 nm of LRE) as that previously observed using conventional ultrathin sections. However, the number of PEI particles on the LRE was markedly decreased and interruption of decorated fibrils was prominent, as compared with group 1. Ultrastructural examination using conventional ultrathin sections with contrasting/fixation and post-fixation (group 3) demonstrated PEI particles on the LRE in reasonable amounts (18-21 particles/1000 nm of LRE) with fairly regular interspacing (45-65 nm) as reported previously.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary In this study, quantitative assessments were carried out, (1) by light microscopy during tissue preparation for electron microscopy and (2) by electron microscopy after on-grid immunogold staining, to determine the suitability of using LR White and Lowicryl K4M thin sections to identify lactoferrin and elastase in the granules of human neutrophil leucocytes. Quantitative assessment of the effect of fixation, dehydration and embedding on the preservation of antigenicity during tissue preparation for electron microscopy, using light microscopic peroxidase anti-peroxidase immunocytochemistry, enabled the selection of preparation conditions that adequately preserved both antigenicity and ultrastructure. OsO4 post-fixation, following primary aldehyde fixation, improved the retention of antigenicity during dehydration and embedding and the preservation of fine structure. Partial rather than complete dehydration retained more of the antigenicity. The efficiency, sensitivity and resolution of immunolabelling and the ultrastructure and quality of sections achieved after embedding in LR White were superior to those obtained after embedding in Lowicryl K4M. Consequently room temperature embedding in LR White following double fixation and partial dehydration is a better and more reliable preparation technique than low-temperature embedding in Lowicryl K4M following single fixation and partial dehydration for localizing lactoferrin and elastase to the specific and primary granules respectively in human neutrophilic granulocytes by the on-grid immunogold staining method.  相似文献   

3.
Synopsis A densitometric method was utilized in the measurement of the relative thickness of the cellular membranes in the ventral lobe of the rat prostate. Potassium permanganate, glutaraldehyde, osmium tetroxide, and ruthenium tetroxide solutions were used as fixatives. During preparation for electron microscopy, the tissues were given standardized treatments to reduce methodological errors; latex particles were applied to the thin sections to serve as reference particles of a known size. The most remarkable observation of the study was that the densitometric method yielded reproducible results and that the different fixatives gave significantly different values for the relative thickness of cellular membranes. Glutaraldehyde, or glutaraldehyde followed by ruthenium tetroxide post-fixation, gave the highest values for membrane thickness while osmium tetroxide and potassium permanganate gave the lowest values. Glutaraldehyde treatment, prior to osmium tetroxide or potassium permanganate post-fixations, rendered the membranes thicker than after osmium tetroxide and potassium permanganate treatments alone. Ruthenium tetroxide appeared to be very suitable for fixation of cellular membranes.  相似文献   

4.
Summary The ultrastructure of anionic sites in the lamina rara externa (LRE) of rat glomerular basement membrane (GBM) was studied in three dimensions by a quick-freezing and deep-etching method using polyethyleneimine (PEI) as a cationic tracer. Results were compared with those obtained with conventional ultrathin sections examined by transmission electron microscopy. Examination with the quick-freezing and deep-etching method was done without (group 1) or with (group 2) contrasting/fixation with a phosphotungstic acid and glutaraldehyde mixture and post-fixation with osmium tetroxide, which were necessary for visualization of PEI particles by conventional ultrathin sections. Using the quick-freezing and deep-etching method without following contrasting/fixation and post-fixation (group 1), many PEI particles were observed to decorate around fibrils, which radiated perpendicularly from the lamina densa to connect with the podocyte cell membrane. The arrangement of PEI particles was not as regular as that previously reported using conventional ultrathin sections. In contrast, the tissue that was studied with quick-freezing and deep-etching followed by contrasting/fixation and post-fixation (group 2) showed a shrunken appearance. The arrangement of PEI particles was regular (about 20 particles/1000 nm of LRE) as that previously observed using conventional ultrathin sections. However, the number of PEI particles on the LRE was markedly decreased and interruption of decorated fibrils was prominent, as compared with group 1. Ultrastructural examination using conventional ultrathin sections with contrasting/fixation and post-fixation (group 3) demonstrated PEI particles on the LRE in reasonable amounts (18–21 particles/1000 nm of LRE) with fairly regular interspacing (45–65 nm) as reported previously.This is the first report to identify the three-dimensional ultrastructure of anionic sites of GBM, and provides new information on the location and distribution of anionic sites in the glomerular capillary wall. In addition, these studies suggest that several chemical procedures used in conventional transmission electron microscopy to visualize PEI tracers, may produce structural changes and disarrangement of PEI particles that can be avoided with the quick-freezing and deep-etching method.  相似文献   

5.
Summary The usefulness of imidazole-buffered osmium tetroxide as a stain for lipids in transmission electron microscopy has been investigated. Rat liver and other tissues were fixed by perfusion with glutaraldehyde and post-fixed with osmium-imidazole and the appearance of lipid droplets was compared with that after post-fixation in unbuffered aqueous osmium tetroxide or an osmium solution buffered otherwise. Prominent electron-opaque staining of lipid droplets and of lipoprotein particles was noted after post-fixation with 2% osmium-imidazole, pH 7.5, for 30 min. The lipid droplets appeared well circumscribed with no evidence of diffusion. In contrast, the intensity of staining was much less and there was some diffusion around lipid droplets in material post-fixed in aqueous or cacodylate-buffered osmium tetroxide. Spot tests on filter paper revealed that unsaturated fatty acids, especially linolenic and linoleic acids reacted more intensely with osmium-imidazole than with aqueous osmium tetroxide. These findings demonstrate that osmium-imidazole provides an excellent stain for lipids in transmission electron microscopy and that most probably it stains lipids with unsaturated fatty acids.  相似文献   

6.
The ultrastructure of Candida krusei   总被引:1,自引:0,他引:1  
Various methods of chemical fixation and freeze-drying of Candida krusei were compared to determine the most appropriate method for the ultrastructural investigation of the thick walled organisms of this genus. Freeze-drying without chemical fixation was of little value because of insufficient variation in electron density. Potassium permanganate was able to penetrate the intact cell but failed to show cytoplasmic glycogen and lipid and some details of the cell wall. While normal glutaraldehyde, formaldehyde and osmium tetroxide treatment failed to permeate and preserve intracellular structures, several cycles of rapid freezing (–155°C) and thawing followed by glutaraldehyde fixation and osmium tetroxide post-fixation demonstrated the intracellular details of the majority of cells so treated.  相似文献   

7.
To facilitate autoradiographic subcellular localization of arachidonoyl phospholipids, the retention of radioactivity during tissue processing of murine fibrosarcoma cells labeled in vitro with 3H-arachidonate was assessed. Approximately 94% of cell radioactivity was incorporated into phospholipids. During tissue processing, extraction of radioactivity was monitored by liquid scintillation spectrometry. Fixation of cells in glutaraldehyde-tannic acid, postfixation in osmium tetroxide, en bloc staining in uranyl magnesium acetate, dehydration in ethanol, and embedding in Epon resulted in preservation of 93.5% of total tissue radioactivity. Analysis of extracted radioactivity by thin layer chromatography revealed that no specific class of phospholipids was selectively extracted. Fixation with osmium tetroxide alone was nearly as effective as the complete fixation protocol and resulted in retention of 90.0% of radioactivity. However, fixation with glutaraldehyde-tannic acid alone without osmium tetroxide post-fixation led to extraction of 69.8% of total cell radioactivity. Thus, osmium tetroxide is crucial in the preservation of arachidonoyl phospholipids and presumably forms extensive cross-links between polyunsaturated acyl residues. This degree of preservation of arachidonoyl phospholipids is indicative of spatial fixation of the radiolabeled moieties and will permit quantitative studies of subcellular loci of eicosanoid metabolism by electron microscopic autoradiography.  相似文献   

8.
UDP-glucose: flavonol 2'- and 5'-O-glucosyltransferases (E.C.2.4.1.-) from leaves of Chrysosplenium americanum were copurified to apparent homogeneity by successive chromatography on Sephacryl S-200, UDP-glucuronic acid-agarose, Mono P, Superose 12, and Mono Q columns. Both enzymes have similar properties except for their substrate specificity and stability (J. Chromatogr. 388, 235, 1987). The purified protein was used as the source of antigen to produce polyclonal antibodies in rabbits. In situ localization of the O-glucosyltransferases was studied by applying a postembedding immunogold labeling technique on ultrathin sections of Lowicryl K4M- and LR White-embedded tissues. Postfixation with osmium tetroxide followed by embedding in LR White resulted in good preservation of membrane ultrastructure, although protein antigenicity was greatly reduced. Leaf sections embedded in Lowicryl K4M had an extracted appearance; however, they retained a high degree of protein antigenicity revealing the deposition of gold particles in the periplasmic region of cells. Considering the compromise chosen in this study to retain antigenicity over preservation of membrane ultrastructure, the results suggest that the "easily solubilized" O-glucosyltransferases of C. americanum may actually be associated with vesicle-like structures and cytoplasmic membranes.  相似文献   

9.
Summary This study deals with the ultrastructure of the chondroitin sulphate proteoglycans of the Kurloff body, a large lysosomal organelle that stains metachromatically with Toluidine Blue and which is present in Kurloff cells (a blood cell unique to the guinea pig). Splenic tissues were fixed with 1% cetylpyridinium chloride (CPC) added to 4% paraformaldehyde and examined either after Spicer's high-iron diamine staining for sulphated anionic sites followed by post-fixation with ferrocyanide-osmium tetroxide or after a simple post-fixation with ferrocyanide-osmium tetroxide. CPC-precipitated sulphated sites were preferentially located at the periphery of the Kurloff body but, unexpectedly, were absent in the central matrix. Although their electron opacity was lower, these anionic sites were readily observable in the absence of HID-staining after sole post-fixation by ferrocyanide-reduced osmium. CPC-precipitated sulphated anionic sites were either associated with the myelin figures or constituted unexpected structures. They contained (i) tightly-stacked lamellae, with a very regular 4 nm periodicity, and (ii) groups of 2, 3, 4 short dense lines with a 3–5 nm periodicity. By taking into account the susceptibility of these HID-reactive structures towards chondroitinase ABC, these different sulphated components were assumed to be related to the proteochondroitin-4-sulphate previously characterized as the only major sulphated glycoconjugate of the Kurloff cell. Their colocalization with phospholipidic structures was suggested following, observation of sections treated by a chloroform-methanol mixture.  相似文献   

10.
We tested various cationic dyes chemically related to ruthenium hexaammine trichloride (RHT) [i.e., the RHT-cyclohexanedione complex (RHT-CC), pentaamine ruthenium N-dimethylphenylenediimine trichloride (PRT), tris-(bipyridyl)ruthenium (II) chloride (TRC), tris (bipyridyl) iron (II) chloride (TIC), and cobalt hexaammine trichloride (CHT)] for their effectiveness in precipitating cartilage matrix proteoglycans in situ. Dyes were introduced into media at the onset of processing and were present throughout both aldehyde fixation and osmium tetroxide post-fixation. Contrary to expectation, most of the dye-proteoglycan complexes generated and stable under aldehyde fixation conditions were found to be unstable during post-fixation despite the continuing presence of the dye. A similar phenomenon was also found for the cationic dyes commonly used for precipitation of proteoglycans in cartilage tissue sections (such as Acridine Orange, Alcian Blue, Azure A, Methylene Blue, and Ruthenium Red). Only two dyes, i.e., RHT and the newly tested RHT-CC, formed proteoglycan precipitates sufficiently stable to resist disruption and extraction during osmium tetroxide post-fixation. The latter may be particularly useful in semiquantitative analyses of proteoglycan content in unstained tissue sections owing to its intense brown-black color. For applications in which the osmium tetroxide post-fixation step may be omitted, TRC and PRT may also be valuable for semiquantitative histochemistry by virtue of their stable fluorescence and intense violet color signals, respectively.  相似文献   

11.
Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy.  相似文献   

12.
Summary The argyrophil, argentaffin and chromaffin reactions were performed directly on ultra-thin sections for examination in the electron microscope. Glutaraldehyde fixation was appropriate for the argentaffin and chromaffin reactions; additional fixation with osmium tetroxide, however, caused impairment of these reactions. Fixation with formaldehyde, but not with glutaraldehyde, was adequate for the argyrophil reaction; post-fixation with osmium tetroxide did not affect this staining. At the light microscopic level the staining reactions were correlated with fluorescence histochemistry according to the method of Falck and Hillarp. The techniques described were used to study certain amine-producing endocrine cell systems: adrenal medullary cells and thyroid parafollicular cells of the mouse, gastric endocrine cells from the oxyntic gland area of the mouse, rat and rabbit. All these cells stained argyrophil. The adrenal medullary cells and one cell type in the oxyntic gland area of the rabbit were strongly argentaffin and chromaffin. The remainder of the cells were non-argentaffin and non-chromaffin but could be induced to give an argentaffin (and chromaffin) reaction after injection of the animals with l-3,4-dihydroxyphenylalanine or l-5-hydroxytryptophan, a treatment which is known to result in the accumulation of the highly reducing dopamine and 5-hydroxytryptamine, respectively, in these endocrine cells. Without exception the precipitates formed in all the staining reactions accumulated selectively over the secretory granules of the cells.The techniques described permit differential staining of consecutive ultra-thin sections for electron microscopic characterization of one and the same cell. They will provide information necessary for correlative studies of the stainable cells at the light and electron microscopic levels.  相似文献   

13.
Summary The ultrastructure and cytochemistry of the secretory granules of the male hamster submandibular salivary gland were studied. After fixation in glutaraldehyde followed by osmium tetroxide the granules exhibit a characteristic bipartite substructure, with an electron lucid crescenteric rim and a more dense central core. A differentiation into two regions of the granules could also be visualized in specimens primarily fixed in Millonig's osmium tetroxide or in potassium permanganate. The electron lucid peripheral portion of the membrane bounded secretory granules further displays a strong positive reaction after staining of ultrathin sections with the periodic acid-chromic acid-(PA-CrA)-silver technique. The strong periodate reactivity of the rim relative to the core, suggests a difference in mucin composition of the two granule regions. With the PA-CrA-silver staining technique a positive reaction was also observed within the Golgi apparatus of the acinar cells.  相似文献   

14.
p-Phenylenediamine (pPD) can be used en bloc to preserve and differentiate cell lipids in aldehyde-fixed peanut plant tissues treated with osmium tetroxide during dehydration in 70% ethanol. Semithin plastic sections for light microscopy need no further staining and can be mounted in Histoclad after drying on a slide. Brown staining above background differentiates lipid-containing structures. Nonspecific staining can be distinguished in control preparations extracted en bloc with lipid solvents.  相似文献   

15.
p-Phenylenediamine (pPD) can be used en bloc to preserve and differentiate cell lipids in aldehyde-fixed peanut plant tissues treated with osmium tetroxide during dehydration in 70% ethanol. Semithin plastic sections for light microscopy need o further staining and can be mounted in Histoclad after drying on a slide. Brown staining above background differentiates lipid-containing structures. Nonspecific staining can be distinguished in control preparations extracted en bloc with lipid solvents.  相似文献   

16.
Aldehyde-fixed rat tissues were variously dehydrated and impregnated in water-miscible 2-hydroxypropyl methacrylate (HPMA) containing 3 to 20 per cent water and 0.1 per cent α,α-azobisisobutyronitrile as catalyst for subsequent polymerization with ultraviolet light. Heat polymerization was also effective. Blocks of embedded tissue readily gave ultrathin sections, which required staining by uranyl acetate and/or lead stains to give adequate contrast for electron microscopy. The ultrastructure of pancreas, kidney, muscle, and intestine was well preserved by aldehyde fixation alone. Use of postfixation in osmium tetroxide or direct osmium tetroxide fixation was unsatisfactory. The fine structure of aldehyde-fixed liver from fasted rats was well preserved, whereas that from normal rats showed considerable disorganization and collapse, apparently because of extraction of glycogen during the embedding procedure. Enzymatic extraction of proteins by pepsin and of ribonucleic acid by ribonuclease after either formaldehyde or glutaraldehyde fixation was rapidly effected by direct treatment of ultrathin sections with solutions of the enzymes. In contrast, no digestion of chromatin by deoxyribonuclease could be detected. In spite of this present limitation, HPMA appears to have several advantages over earlier water-miscible embedding media for electron microscopy and to be particularly suitable for ultrastructural cytochemistry.  相似文献   

17.
We describe a novel method for localizing sparse antigens in thin sections by protein A-gold labeling. The primary antibody is applied to fixed and detergent-permeabilized cells. The cells are then incubated with an anti-antibody that has been labeled with multiple dinitrophenol residues. The cells are next fixed again with glutaraldehyde and osmium tetroxide fixatives before embedding in Eponate. When thin sections are prepared, the dinitrophenol residues are readily detected with a tertiary anti-DNP antibody followed by protein A-gold labeling. This method offers good sensitivity along with superior morphology. Our test antigen for this method was the receptor for low-density lipoprotein, an antigen which had evaded detection by protein A-gold using ultra-thin cryosections.  相似文献   

18.
An antibody (LK2H10) to chromogranin A has been recommended for use in ultrastructural identification of neuroendocrine secretory granules. Previous studies have demonstrated immunoreactive chromogranin A in specimens prepared for electron microscopy by glutaraldehyde fixation only. In this study, the effect of specimen post-fixation by osmium tetroxide on post-embedding localization of chromogranin A was evaluated. Human tissues from benign endocrine glands, neuroendocrine tumors, and non-neuroendocrine tumors were post-fixed in osmium, embedded in epoxy resin, and the sample thin sections immunolabeled using a protein A-gold technique. Chromogranin A-positive neurosecretory granules were detected in pancreatic islets, adrenal medulla, stomach, ileum, anterior pituitary, and parathyroid. Mid-gut carcinoids, bronchial carcinoids, pheochromocytomas, paragangliomas, carotid body tumors, and thyroid medullary carcinomas contained immunoreactive granules. Cytoplasmic granules in non-neuroendocrine tumors did not react for chromogranin A. Tissues post-fixed in osmium tetroxide had optimally preserved ultrastructural features, and use of this fixative is compatible with postembedding localization of chromogranin A in neurosecretory granules.  相似文献   

19.
Chick embryo mitochondria, studied with the electron microscope, show crista-free areas of low electron opacity. These areas are observable after fixation with osmium tetroxide, calcium permanganate, potassium permanganate, formaldehyde, acrolein, acrolein followed by osmium tetroxide, uranyl acetate followed by calcium permanganate, and acetic acid-alcohol. Staining of sections with lead hydroxide or uranyl acetate, or with both, resulted in an increased density of a fibrous material within these areas. The appearance of the fibrous structures varied with the fixative employed; after fixation with osmium tetroxide the material was clumped and bar-like (up to 400 A in diameter), whereas after treatment of osmium tetroxide-fixed tissues with uranyl acetate before dehydration the fibrous structures could be visualized as 15 to 30 A fibrils. Treatment with ethylenediaminetetraacetate (EDTA) in place of uranyl acetate coarsened the mitochondrial fibrils. After fixation with calcium permanganate or potassium permanganate, or a double fixation by uranyl acetate followed by calcium permanganate, the fibers appeared to have a pattern and ultrastructure similar to that observed after the osmium tetroxide-uranyl acetate technique, except that some of them had a slightly greater diameter (up to 50 A). Other fixatives did not preserve the fibers so well. The fibers appeared strongly clumped by formaldehyde fixation, and were difficult to identify after fixation with acrolein or acetic acid-alcohol. The staining of nucleic acid-containing structures by uranyl acetate and lead hydroxide was improved by treatment of osmium tetroxide-fixed sections with hydrogen peroxide, and the mitochondrial fibers also had an increased density in the electron beam after this procedure. The staining characteristics suggest the fibrous material of chick embryo mitochondria to be a nucleic acid-containing structure, and its variable appearance after different fixations parallels that previously reported, or described in this paper, for the nucleoplasm of bacteria and blue-green algae. The results, in addition to those described in the accompanying communication, indicate that these mitochondria contain DNA.  相似文献   

20.
Size changes in single muscle fibers during fixation and embedding.   总被引:2,自引:0,他引:2  
During fixation of single muscles fibers with glutaraldehyde, the volume of the fiber shrinks 20%, recovers in rinse and osmium tetroxide to near normal volume and shrinks 20% again when staining with uranyl acetate. This suggest that osmotic properties of membranes may not have been completely lost during fixation, post-fixation and en bloc staining. Dehydration in ethanol and propylene oxide produces a further 10% shrinkage in volume. Infiltration and embedding with Epon causes an additional 15% change in volume. This gives a total shrinkage in volume of 45% which is nearly twice that of the apparent shrinkage in the volume of the myosin lattice as determined by electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号