首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of trypanothione, a glutathione-spermidine conjugate, are increased in the protozoan parasite Leishmania selected for resistance to the heavy metal arsenite. The levels of putrescine and spermidine were increased in resistant mutants. This increase is mediated by overexpression of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Gene overexpression is generally mediated by gene amplification in Leishmania but, here, the mRNA and the enzymatic activity of ODC are increased without gene amplification. This RNA overexpression is stable when cells are grown in the absence of the drug and does not result from gene rearrangements or from an increased rate of RNA synthesis. Transient transfections suggest that mutations in the revertant cells contribute to these elevated levels of RNA. Stable transfection of the ODC gene increases the level of trypanothione, which can contribute to arsenite resistance. In addition to ODC overexpression, the gene for the ABC transporter PGPA is amplified in the mutants. The co-transfection of the ODC and PGPA genes confers resistance in a synergistic fashion in partial revertants, also suggesting that PGPA recognizes metals conjugated to trypanothione.  相似文献   

2.
Heby O  Persson L  Rentala M 《Amino acids》2007,33(2):359-366
Summary. Trypanosomatids depend on spermidine for growth and survival. Consequently, enzymes involved in spermidine synthesis and utilization, i.e. arginase, ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetDC), spermidine synthase, trypanothione synthetase (TryS), and trypanothione reductase (TryR), are promising targets for drug development. The ODC inhibitor α-difluoromethylornithine (DFMO) is about to become a first-line drug against human late-stage gambiense sleeping sickness. Another ODC inhibitor, 3-aminooxy-1-aminopropane (APA), is considerably more effective than DFMO against Leishmania promastigotes and amastigotes multiplying in macrophages. AdoMetDC inhibitors can cure animals infected with isolates from patients with rhodesiense sleeping sickness and leishmaniasis, but have not been tested on humans. The antiparasitic effects of inhibitors of polyamine and trypanothione formation, reviewed here, emphasize the relevance of these enzymes as drug targets. By taking advantage of the differences in enzyme structure between parasite and host, it should be possible to design new drugs that can selectively kill the parasites.  相似文献   

3.
. Ornithine decarboxylase and trypanothione reductase are the key enzymes in polyamine and trypanothione metabolism in kinetoplastids. Using a heterologous Trypanosoma brucei brucei probe for ornithine decarboxylase and a mixed synthetic probe of 29 oligonucleotides for trypanothione reductase, we have detected the putative genes for these enzymes by Southern blot hybridization using genomic DNA of Leishmania braziliensis guyanensis MHOM/SR/80/CUMC I. The trypanothione reductase probe was constructed both from the conserved codon usage of the redox active site for other flavin oxidoreductases over a wide evolutionary scale, and the preferred codon usage for other genes in species of Leishmania .  相似文献   

4.
Ornithine decarboxylase and trypanothione reductase are the key enzymes in polyamine and trypanothione metabolism in kinetoplastids. Using a heterologous Trypanosoma brucei brucei probe for ornithine decarboxylase and a mixed synthetic probe of 29 oligonucleotides for trypanothione reductase, we have detected the putative genes for these enzymes by Southern blot hybridization using genomic DNA of Leishmania braziliensis guyanensis MHOM/SR/80/CUMC 1. The trypanothione reductase probe was constructed both from the conserved codon usage of the redox active site for other flavin oxidoreductases over a wide evolutionary scale, and the preferred codon usage for other genes in species of Leishmania.  相似文献   

5.
Comparisons were made of ornithine decarboxylase isolated from Morris hepatoma 7777, thioacetamide-treated rat liver and androgen-stimulated mouse kidney. The enzymes from each source were purified in parallel and their size, isoelectric point, interaction with a monoclonal antibody or a monospecific rabbit antiserum to ornithine decarboxylase, and rates of inactivation in vitro, were studied. Mouse kidney, which is a particularly rich source of ornithine decarboxylase after androgen induction, contained two distinct forms of the enzyme which differed slightly in isoelectric point, but not in Mr. Both forms had a rapid rate of turnover, and virtually all immunoreactive ornithine decarboxylase protein was lost within 4h after protein synthesis was inhibited. Only one form of ornithine decarboxylase was found in thioacetamide-treated rat liver and Morris hepatoma 7777. No differences between the rat liver and hepatoma ornithine decarboxylase protein were found, but the rat ornithine decarboxylase could be separated from the mouse kidney ornithine decarboxylase by two-dimensional gel electrophoresis. The rat protein was slightly smaller and had a slightly more acid isoelectric point. Studies of the inactivation of ornithine decarboxylase in vitro in a microsomal system [Zuretti & Gravela (1983) Biochim. Biophys. Acta 742, 269-277] showed that the enzymes from rat liver and hepatoma 7777 and mouse kidney were inactivated at the same rate. This inactivation was not due to degradation of the enzyme protein, but was probably related to the formation of inactive forms owing to the absence of thiol-reducing agents. Treatment with 1,3-diaminopropane, which is known to cause an increase in the rate of degradation of ornithine decarboxylase in vivo [Seely & Pegg (1983) Biochem. J. 216, 701-717] did not stimulate inactivation by microsomal extracts, indicating that this system does not correspond to the rate-limiting step of enzyme breakdown in vivo.  相似文献   

6.
The activity of L-arginine decarboxylase (EC 4.1.1.19) and L-ornithine decarboxylase (EC 4.1.1.17), polyamine content, and incorporation of arginine and ornithine into polyamines, were determined in mung bean [Vigna radiata (L.) Wilczek] plants subjected to salt (hypertonic) stress (NaCl at 0.51–2.27 MPa). Changes in enzyme activity in response to hypotonic stress were determined as well in several halophytes [Pulicaria undulata (L.), Kostei, Salsola rosmarinus (Ehr.) Solms-Laub, Mesembryanthemum forskahlei Hochst, and Atriplex halimus L.]. NaCl stress, possibly combined with other types of stress that accompanied the experimental conditions, resulted in organ-specific changes in polyamine biosynthesis and content in mung bean plants. The activity of both enzymes was inhibited in salt-stressed leaves. In roots, however, NaCl induced a 2 to 8-fold increase in ornithine decarboxylase activity. Promotion of ornithine decarboxylase in roots could be detected already 2 h after exposure of excised roots to NaCl, and iso-osmotic concentrations of NaCl and KCl resulted in similar changes in the activity of both enzymes. Putrescine level in shoots of salt-stressed mung bean plants increased considerably, but its level in roots decreased. The effect of NaCl stress on spermidine content was similar, but generally more moderate, resulting in an increased putrescine/spermidine ratio in salt-stressed plants. Exposure of plants to NaCl resulted also in organ-specific changes in the incorporation of both arginine and ornithine into putrescine: incorporation was inhibited in leaf discs but promoted in excised roots of salt-stressed mung bean plants. In contrast to mung bean (and several other glycophytes), ornithine and arginine decarboxylase activity in roots of halophytes increased when plants were exposed to tap water or grown in a pre-washed soil—i.e. a hypotonic stress with respect to their natural habitat. NaCl, when present in the enzymatic assay mixture, inhibited arginine and ornithine decarboxylase in curde extracts of mung bean roots, but did not affect the activity of enzymes extracted from roots of the halophyte Pulicaria. Although no distinct separation between NaCl stress and osmotic stress could be made in the present study, the data suggest that changes in polyamines in response to NaCl stress in mung bean plants are coordinated at the organ level: activation of biosynthetic enzymes concomitant with increased putrescine biosynthesis from its precursors in the root system, and accumulation of putrescine in leaves of salt-stressed plants. In addition, hypertonic stress applied to glycophytes and hypotonic stress applied to halophytes both resulted in an increase in the activity of polyamine biosynthetic enzymes in roots.  相似文献   

7.
The effect of histamine on different aspects of the growth of astrocytes was studied using primary cultures derived either from forebrain or from cerebellum of the rat. The influence on general growth and differentiation was monitored in terms of the activities of ornithine decarboxylase and glutamine synthetase enzymes, whereas [3H]thymidine incorporation into DNA was used as a specific index of cell proliferation. Treatment with 500 nM histamine of cells grown for 6 days in vitro, caused a time-dependent significant increase in ornithine decarboxylase activity of astrocytes from both sources. The maximum increase was observed at 4 h after histamine treatment, at that time the elevation in ornithine decarboxylase activity being about 80% and 300% over control values in the forebrain and the cerebellar astrocytes, respectively. Under similar experimental conditions, addition of histamine (500 nM) to medium resulted in a significant increase in [3H]thymidine incorporation into DNA in both types of cultures: in comparison with control, the elevation was about 45% at 48 h in forebrain astrocytes and at 24 h in cerebellar astrocytes. On the other hand, the specific activity of glutamine synthetase in cerebellar astrocytes was markedly enhanced (about 100%) by treatment with histamine (500 nM) for 4 days, but forebrain astrocytes were little affected. Addition of histamine to the culture medium produced no significant alteration in the activity of lactate dehydrogenase and protein content of either type of astroglial cells. The present findings, which support our earlier proposal that the biochemical properties of astrocytes differ between various brain regions, provide direct evidence for the involvement of histamine in the regulation of growth and development of astrocytes.  相似文献   

8.
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei—the causative agent of Human African Trypanosomiasis—by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC–MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism.  相似文献   

9.
Lymphocyte stimulation by phytohaemagglutinin (PHA) is accompanied by marked increases in the activities of ornithine decarboxylase and S-adenosyl methionine decarboxylase, two key enzymes for the synthesis of polyamines. Both enzymes increase in a biphasic manner, with the rises in S-adenosyl methionine decarboxylase preceding the increases in ornithine decarboxylase. The initial rises precede the initiation of DNA synthesis, and seem to correlate with the increased rate of ribosomal RNA synthesis. Selective inhibition of ribosomal RNA synthesis inhibits the increases in the activity of both enzymes, especially ornithine decarboxylase, more than the increase in the overall rate of protein synthesis.Both enzymes are metabolically unstable and have half-lives of less than 1 h, although the half-life of ornithine decarboxylase depends on the amino acid concentration in the culture medium. While effects of PHA on the stability of the enzymes have not been ruled out, at least part of the PHA-dependent increases in activity are due to increased synthesis or activation of the enzymes. The synthesis of S-adenosyl-methionine decarboxylase declines rapidly after inhibition of RNA synthesis, but ornithine decarboxylase activity declines at about the same rate as protein synthesis as a whole.The activities of both enzymes also increase during lymphocyte stimulation by concanavalin A, lentil extract and staphylococcal filtrate.  相似文献   

10.
The response of all urea cycle enzymes, i.e. carbamyl phosphate synthetase, ornithine transcarbamylase, argininosuccinate synthetase, argininosuccinase and arginase, has been determined in the liver of protein-depleted young rats which were forcibly fed individual essential l-amino acids along with or without caloric sources. The feeding of individual amino acids produced different effects on the level of each of the enzymes, and generally the response of carbamyl phosphate synthetase, argininosuccinate synthetase, argininosuccinase and arginase was greater than that of ornithine transcarbamylase. Of all the essential amino acids tested tryptophan was most effective on the elevation of these enzymes. Several amino acids, phenylalanine, leucine, threonine and methionine had also somewhat effect on the increase of some enzyme activities, but other amino acids had little or no effect on the response of these enzymes. On the contrary, histidine and lysine caused appreciable decrease of arginase activity. These enzyme activities in rats fed tryptophan alone were extremely higher than those of animals fed it along with caloric sources. The response level of the enzymes was essentially dependent on the tryptophan content in diets under the proper conditions. Tryptophan feeding did not produce any increase in both levels of urine and plasma urea despite the elevation of all urea cycle enzyme activities occured.  相似文献   

11.
Summary All the five enzymes of urea synthesis and the formation of urea in vitro can already be demonstrated in human liver as early as the 9th week of fetal development. At this stage the activity of carbamoyl phosphate synthetase is the highest, whereas that of ornithine carbamoyltransferase is the lowest as compared to those in the adult. The kinetic parameters of the urea cycle enzymes are the same in fetal liver as in adult liver, except that the Km values of ornithine carbamoyltransferase for L-ornithine are 3.5 mM and 0.42 mM in the fetus and in adult liver, respectively.Urea formation in vivo seems to begin in the second half of fetal life, and a gradual increase can be detected in the activity of the enzymes of urea synthesis. The activity of ortnithine decarboxylase, the glutamine-dependent carbamoyl phosphate synthetase and aspartate carbamoyltransferase, however, changes in the opposite direction.The concentration of carbamoyl phosphate and aspartate remains constant, but that of ornithine gradually decreases during ontogenesis. The ornithine, carbamoyl phosphate and aspartate pools are probably utilized in the polyamine, pyrimidine and urea syntheses at varying rates.  相似文献   

12.
Treatment of tobacco liquid suspension cultures with methylglyoxal bis(guanylhydrazone) (MGBG) an inhibitor of S-adenosylmethionine decarboxylase, resulted in a dramatic overproduction of a 35-kDa peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Malmberg, R.L., and McIndoo, J. (1983) Nature 305, 623-625). MGBG treatment also resulted in a 20-fold increase in the activity of S-adenosylmethionine decarboxylase. Purification of S-adenosylmethionine decarboxylase from MGBG-treated cultures revealed that the overproduced 35-kDa peptide and S-adenosylmethionine decarboxylase are identical. Precursor incorporation experiments using [3H] methionine and [35S]methionine revealed that MGBG does not induce any increased synthesis of S-adenosylmethionine decarboxylase but rather stabilizes the protein to proteolytic degradation. The half-life of the enzyme activity was increased when MGBG was present in the growth medium. In addition to stabilizing S-adenosylmethionine decarboxylase, MGBG also resulted in the rapid and specific loss of arginine decarboxylase activity with little effect ornithine decarboxylase. The kinetics of this effect suggest that arginine decarboxylase synthesis was rapidly inhibited by MGBG. Exogenously added polyamines had little effect on ornithine decarboxylase, whereas S-adenosylmethionine and arginine decarboxylase activities rapidly diminished with added spermidine or spermine. Finally, inhibition of ornithine decarboxylase was lethal to the cultures, whereas inhibition of arginine decarboxylase was only lethal during initiation of growth in suspension culture.  相似文献   

13.
1. Starvation caused a marked decrease in the activity of ornithine decarboxylase in mammary gland, together with a lesser decrease in the activity of S-adenosylmethionine decarboxylase and a marked fall in milk production. Liver ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were unaffected. 2. Refeeding for 2.5 h was without effect on ornithine decarboxylase in mammary gland, but it returned the S-adenosylmethionine decarboxylase activity in mammary gland to control values and elevated both ornithine decarboxylase and S-adenosylmethionine decarboxylase in liver. 3. Refeeding for 5 h returned the activity of ornithine decarboxylase in mammary gland to fed-state values and resulted in further increases in S-adenosylmethionine decarboxylase in mammary gland and liver and in ornithine decarboxylase in liver. 4. Prolactin deficiency in fed rats resulted in decreased milk production and decreased activity of ornithine decarboxylase in mammary gland. The increase in ornithine decarboxylase activity normally seen after refeeding starved rats for 5 h was completely blocked by prolactin deficiency. 5. In fed rats, injection of streptozotocin 2.5 h before death caused a decrease in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase in mammary gland, which could be reversed by simultaneous injection of insulin. Insulin deficiency also prevented the increase in S-adenosylmethionine decarboxylase in liver and mammary gland normally observed after refeeding starved rats for 2.5 h.  相似文献   

14.
In Crithidia fasciculata the biosynthesis of trypanothione (N(1),N(8)-bis(glutathionyl)spermidine; reduced trypanothione), a redox mediator unique to and essential for pathogenic trypanosomatids, was assumed to be achieved by two distinct enzymes, glutathionylspermidine synthetase and trypanothione synthetase (TryS), and only the first one was adequately characterized. We here report that the TryS of C. fasciculata, like that of Trypanosoma species, catalyzes the entire synthesis of trypanothione, whereas its glutathionylspermidine synthetase appears to be specialized for Gsp synthesis. A gene (GenBanktrade mark accession number AY603101) implicated in reduced trypanothione synthesis of C. fasciculata was isolated from genomic DNA and expressed in Escherichia coli as His-tagged or Nus fusion proteins. The expression product proved to be a trypanothione synthetase (Cf-TryS) that also displayed a glutathionylspermidine synthetase, an amidase, and marginal ATPase activity. The dual specificity of the Cf-TryS preparations was not altered by removal of the tags. Steady-state kinetic analysis of Cf-TryS yielded a pattern that was compatible with a concerted substitution mechanism, wherein the enzyme forms a ternary complex with Mg(2+)-ATP and GSH to phosphorylate GSH and then ligates the glutathionyl residue to glutathionylspermidine. Limiting K(m) values for GSH, Mg(2+)-ATP, and glutathionylspermidine were 407, 222, and 480 microm, respectively, and the k(cat) was 8.7 s(-1) for the TryS reaction. Mutating Arg-553 or Arg-613 to Lys, Leu, Gln, or Glu resulted in marked reduction or abrogation (R553E) of activity. Limited proteolysis with factor Xa or trypsin resulted in cleavage at Arg-556 that was accompanied by loss of activity. The presence of substrates, in particular of ATP and GSH alone or in combination, delayed proteolysis of wild-type Cf-TryS and Cf-TryS R553Q but not in Cf-TryS R613Q, which suggests dynamic interactions of remote domains in substrate binding and catalysis.  相似文献   

15.
The Ca2+ ionophore A23187 induced small increases in ornithine decarboxylase activity and ornithine decarboxylase mRNA in guinea pig lymphocytes. 1,2-Dioctanoylglycerol potentiated the A23187-induced ornithine decarboxylase activity and the accumulation of mRNA for this enzyme. Dibutyryl cAMP also potentiated the enzyme activity, but had little effect on the accumulation of mRNA. 1,2-Dioctanoylglycerol and 12-O-tetradecanoylphorbol-13-acetate potentiated ornithine decarboxylase activity that had been increased by treatment with both A23187 and dibutyryl cAMP with a consistent increase in the ornithine decarboxylase mRNA. However, dibutyryl cAMP augmented ornithine decarboxylase activity that had been increased by the combination of A23187 and 1,2-dioctanoylglycerol without affecting the ornithine decarboxylase mRNA level. These results suggest that the protein kinase C and cyclic AMP pathways are involved in the enhancement of ornithine decarboxylase activity in guinea pig lymphocytes, but that the mechanisms of the enhancement differ for each pathway, the former increasing the ornithine decarboxylase mRNA level, but not the latter.  相似文献   

16.
1. The activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and ornithine-2-oxoglutarate aminotransferase were studied during the first 24 h of conidial germination in Aspergillus nidulans. 2. Increases (over 100-fold) in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase occurred during the emergence of the germ-tube and before the doubling of DNA and this was followed by a sharp fall in the activities of both enzymes by 16h. 3. The increase in ornithine decarboxylase could be largely suppressed if 0.6 mM-putrescine was added to the growth medium. 4. Low concentrations of cycloheximide, which delayed germination by 2h, caused a corresponding delay in the changes in ornithine decarboxylase activity. 5. Ornithine-2-oxoglutarate aminotransferase activity increased steadily during the first 24h of germination. 6. Ornithine or arginine in the growth medium induced higher activity of ornithine-2-oxoglutarate aminotransferase, but did not affect ornithine decarboxylase activity. 7. The significance of these enzyme changes during germination is discussed.  相似文献   

17.
The parasitic protozoa Trypanosoma brucei utilizes a novel cofactor (trypanothione, T(SH)2), which is a conjugate of GSH and spermidine, to maintain cellular redox balance. gamma-Glutamylcysteine synthetase (gamma-GCS) catalyzes the first step in the biosynthesis of GSH. To evaluate the importance of thiol metabolism to the parasite, RNAi methods were used to knock down gene expression of gamma-GCS in procyclic T. brucei cells. Induction of gamma-GCS RNAi with tetracycline led to cell death within 4-6 days post-induction. Cell death was preceded by the depletion of the gamma-GCS protein and RNA and by the loss of the cellular pools of GSH and T(SH)2. The addition of GSH (80 microM) to cell cultures rescued the RNAi cell death phenotype and restored the intracellular thiol pools to wild-type levels. Treatment of cells with buthionine sulfoximine (BSO), an enzyme-activated inhibitor of gamma-GCS, also resulted in cell death. However, the toxicity of the inhibitor was not reversed by GSH, suggesting that BSO has more than one cellular target. BSO depletes intracellular thiols to a similar extent as gamma-GCS RNAi; however, addition of GSH did not restore the pools of GSH and T(SH)2. These data suggest that BSO also acts to inhibit the transport of GSH or its peptide metabolites into the cell. The ability of BSO to inhibit both synthesis and transport of GSH likely makes it a more effective cytotoxic agent than an inhibitor with a single mode of action. Finally the potential for the T(SH)2 biosynthetic enzymes to be regulated in response to reduced thiol levels was studied. The expression levels of ornithine decarboxylase and of S-adenosylmethionine decarboxylase, two essential enzymes in spermidine biosynthesis, remained constant in induced gamma-GCS RNAi cell lines.  相似文献   

18.
DL-alpha-Difluoromethylornithine, an enzyme-activated irreversible inhibitor of eukaryotic ornithine decarboxylase and consequently of putrescine biosynthesis, inhibited ornithine decarboxylase in enzyme extracts from Pseudomonas aeruginosa in a time-dependent manner t1/2 1 min, and also effectively blocked the enzyme activity in situ in the cell. Difluoromethylornithine, however, had no effect on the activity of ornithine decarboxylase assayed in enzyme extracts from either Escherichia coli or Klebsiella pneumoniae. However, the presence of the inhibitor in cell cultures did partially lower ornithine decarboxylase activity intracellularly in E. coli. Any decrease in the intracellular ornithine decarboxylase activity observed in E. coli and Pseudomonas was accompanied by a concomitant increase in arginine decarboxylase activity, arguing for a co-ordinated control of putrescine biosynthesis in these cells.  相似文献   

19.
The administration of cadmium (1.25 mg as Cd2+/kg, ip.) to male rats resulted in a significant increase of hepatic and renal ornithine decarboxylase activity. The maximum increase of ornithine decarboxylase activity to about 10-fold of the controls was seen at 4 hr after the administration of cadmium, and the increased enzyme activity was returned to control levels by 12 hr. Cadmium produced somewhat dose-dependently the increase of ornithine decarboxylase activity. The increase of ornithine decarboxylase seen on the administration of cadmium was cancelled by pretreatment of rats with cycloheximide. The treatment of female rats with cadmium also caused the increase of hepatic ornithine decarboxylase activity, but not renal enzyme activity.  相似文献   

20.
Abstract: We recently demonstrated that, unlike in peripheral tissues, the increase in activity of polyamine synthesizing enzymes observed in the brain after acute stress can be prevented by long-term, but not by short-term, treatment with lithium. In the present study we sought to examine the effects of chronic intermittent stress on two key polyamine synthesizing enzymes, ornithine decarboxylase and S-adenosylmethionine decarboxylase, and their modulation by lithium treatment. Adult male rats were subjected to 2 h of restraint stress once daily for 5 days and to an additional delayed stress episode 7 days later. Enzyme activities were assayed 6 h after the beginning of each stress episode. In contrast to the liver, where ornithine decarboxylase activity was increased (300% of the control) only after the first stress episode, the enzyme activity in the brain was increased after each stress episode (to ~170% of the control). Unlike ornithine decarboxylase activity, S-adenosylmethionine decarboxylase activity was slightly reduced after the first episode (86% of the control) but remained unchanged thereafter. After cessation of the intermittent stress period, an additional stress episode 7 days later led again to an increase in ornithine decarboxylase activity in the brain (225% of the control) but not in the liver, whereas S-adenosylmethionine decarboxylase activity remained unchanged. The latter increase in ornithine decarboxylase activity was blocked by lithium treatment during the intervening 7-day interval between stressors. The results warrant the following conclusions: (a) Repetitive application of stressors results in a recurrent increase in ornithine decarboxylase activity in the brain but to habituation of this response in the liver. (b) This brain polyamine stress response can be blocked by long-term (days) lithium treatment. (c) The study implicates an overreactive polyamine response as a component of the adaptive, or maladaptive, brain response to stressful events and as a novel molecular target for lithium action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号