首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Apoptosis is a highly controlled process, whose triggering is associated with the activation of caspases. Apoptosis can be induced via a subgroup of the tumor necrosis factor (TNF) receptor superfamily, which recruit and activate pro-caspase-8 and -10. Regulation of apoptosis is achieved by several inhibitors, including c-FLICE-inhibitory protein, which prevents apoptosis by inhibiting the pro-apoptotic activation of upstream caspases. Here we show that the human intracellular serine protease inhibitor (serpin), protease inhibitor 9 (PI9), inhibits TNF-, TNF-related apoptosis-inducing ligand- and Fas ligand-mediated apoptosis in certain TNF-sensitive cell lines. The reactive center P1 residue of PI9 was required for this inhibition since PI9 harboring a Glu --> Ala mutation in its reactive center failed to impair death receptor-induced cell death. This suggests a classical serpin-protease interaction. Indeed, PI9 inhibited apoptotic death by directly interacting with the intermediate active forms of caspase-8 and -10. This indicates that PI9 can regulate pro-apoptotic apical caspases.  相似文献   

2.
Plasminogen activator inhibitor type-2 (PAI-2) is a nonconventional serine protease inhibitor (serpin) with unique and tantalizing properties that is generally considered to be an authentic and physiological inhibitor of urokinase. However, the fact that only a small percentage of PAI-2 is secreted has been a long-standing argument for alternative roles for this serpin. Indeed, PAI-2 has been shown to have a number of intracellular roles: it can alter gene expression, influence the rate of cell proliferation and differentiation, and inhibit apoptosis in a manner independent of urokinase inhibition. Despite these recent advances in defining the intracellular function of PAI-2, it still remains one of the most mysterious and enigmatic members of the serpin superfamily.  相似文献   

3.
 In stratified squamous epithelia a critical balance among cell proliferation, differentiation, and death must be maintained in order for these tissues to fulfill their barrier function. Previous studies have demonstrated that plasminogen activator inhibitor 2 (PAI-2) is a product of differentiating epidermal keratinocytes, suggesting a role for this inhibitor during squamous differentiation. Furthermore, in certain tumor cell lines, overexpression of PAI-2 confers resistance to the induction of programmed cell death, suggesting cytoprotective function(s). In the present study we demonstrate that PAI-2 mRNA and protein are constitutively and uniquely expressed in differentiating cells of murine stratified squamous epithelia, including epidermis, esophagus, vagina, oral mucosa, and tongue. PAI-2 immunohistochemical localization patterns suggest a predominantly cytosolic distribution, consistent with biochemical identification of the major PAI-2 species as a 43-kDa, presumably non-glycosylated protein. Functional analysis shows that the majority of epithelial PAI-2 is active. In contrast to the high levels of PAI-2 expression in stratified squamous epithelia, little or no PAI-2 is detectable in simple epithelia. These findings suggest that epithelial PAI-2 may mediate inhibition of intracellular proteinases associated with events during terminal differentiation and death that are unique to stratified squamous epithelia. Accepted: 29 June 1998  相似文献   

4.
5.
Tumor necrosis factor-alpha (TNFalpha) critically regulates several cellular functions during monocyte/macrophage differentiation. We therefore investigated during the phorbol ester (phorbol 12-myristate 13-acetate (PMA))-induced monocyte/macrophage differentiation of the human HL-60 leukemia cells, if TNFalpha contributed to plasminogen activator inhibitor type-1 (PAI-1) synthesis that is initiated by a protein kinase Cbeta-extracellular signal-regulated kinase 2-dependent pathway (Lopez, S., Peiretti, F., Morange, P., Laouar, A., Fossat, C., Bonardo, B., Huberman, E., Juhan-Vague, I., and Nalbone, G. (1999) Thromb. Haemostasis 81, 415-422). Following PMA treatment, the level of TNFalpha mRNA strongly increased and appeared earlier than PAI-1 mRNA. An anti-TNFalpha antibody significantly inhibited the PMA-induced PAI-1 mRNA and protein levels. The recombinant human TNFalpha, which is inactive on native HL-60 cells in terms of PAI-1 synthesis, optimally potentiates it once HL-60 cells are committed into the differentiation process. The use of 1) the HL-525 cell line, a clone issued from HL-60 cells rendered resistant to PMA-induced differentiation, and 2) the transforming growth factorbeta-1/vitamin D3 differentiative mixture confirmed the relationships between the induction of differentiation and the potency of TNFalpha to up-regulate PAI-1 synthesis. In conclusion, we showed that during the induction of monocyte/macrophage differentiation, TNFalpha and PAI-1 gene expressions are activated and that synthesized TNFalpha up-regulates and prolongs, in an autocrine manner, the synthesis of PAI-1.  相似文献   

6.
7.
Liew MA  McPhun V  Baker MS 《Cytometry》2000,40(1):32-41
BACKGROUND: Plasminogen activator inhibitor type 2 (PAI-2) is a member of the serine protease inhibitor (SERPIN) superfamily and forms stable complexes with urokinase type plasminogen activator (uPA). uPA can be found on the cell surface attached to its specific receptor (uPAR), allowing for controlled degradation of the extracellular matrix by the activation of plasminogen into plasmin. The aim of this study was to evaluate if PAI-2 could also be detected on the cell surface, providing a means of regulating the activity of cell surface uPA. METHODS: Intact or permeabilized cell lines or human peripheral blood leukocytes were assayed by flow cytometry for cell surface uPA or PAI-2. Plasma membrane-enriched preparations prepared from Jurkat, HaCaT, THP-1, U937, or MM6 cells were assayed by enzyme-linked immunosorbent assay (ELISA) or Western blotting for PAI-2 antigen. RESULTS: By flow cytometry, cell surface PAI-2 was not detected on monocytes from human peripheral blood, MM6, or HaCaT cells. Cell surface PAI-2 was only detected very weakly on the surface of U937 cells. In contrast, PAI-2 could be detected in all of these cells when fixed and permeabilized. By ELISA, PAI-2 was very abundant in the cytosol-enriched preparations of U937, MM6, and HaCaT cells, but was present in lower amounts in the plasma membrane-enriched preparations. By Western blotting, monomeric nonglycosylated PAI-2, but not uPA/PAI-2 complexes, could be detected in the cytosol and plasma membrane-enriched preparations. CONCLUSIONS: These results indicate that PAI-2 cannot be detected on the surface of PAI-2-expressing cells, and confirm that PAI-2 is predominantly a cytosolic protein.  相似文献   

8.
Vitronectin endows plasminogen activator inhibitor 1 (PAI-1), the fast-acting inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), with additional thrombin inhibitory properties. In view of the apparent association between PAI-1 and vitronectin in the endothelial cell matrix (ECM), we analyzed the interaction between PAI-1 and thrombin in this environment. Upon incubating 125I-labeled alpha-thrombin with endothelial cell matrix (ECM), the protease formed SDS-stable complexes exclusively with PAI-1, with subsequent release of these complexes into the supernatant. Vitronectin was required as a cofactor for the association between PAI-1 and thrombin in ECM. Metabolic labeling of endothelial cell proteins, followed by incubation of ECM with t-PA, u-PA, or thrombin, indicated that all three proteases depleted PAI-1 from ECM by complex formation and proteolytic cleavage. Proteolytically inactive thrombin as well as anticoagulant thrombin, i.e., thrombin in complex with its endothelial cell surface receptor thrombomodulin, did not neutralize PAI-1, emphasizing that the procoagulant moiety of thrombin is required for a functional interaction with PAI-1. A physiological implication of our findings may be related to the mutual neutralization of both PAI-1 and thrombin, providing a new link between plasminogen activation and the coagulation system. Evidence is provided that in ECM, procoagulant thrombin may promote plasminogen activator activity by inactivating PAI-1.  相似文献   

9.
10.
Plasminogen-activator inhibitor type 2 (PAI-2) is a specific inhibitor of plasminogen activators that belongs to the serine protease inhibitor superfamily (SERPINS). PAI-2 exists in two molecular forms: an intracellular, non-glycosylated form and a secreted, glycosylated form. Like ovalbumin, PAI-2 contains an uncleaved internal secretion signal. By deletion analysis, we have mapped the secretion signal to two mildly hydrophobic regions near the NH2 terminus. We also show that both of these regions become more efficient translocation signals when their hydrophobicities are increased. The PAI-2 secretion signal provides a unique example of a signal that, by virtue of its poor efficiency, allows the synthesis of both an extracellular and an intracellular form of the protein.  相似文献   

11.
Purified recombinant human monocyte plasminogen activator inhibitor 2 (PAI-2) retained inhibitory activity after exposure to a number of oxidants, including hypochlorite anion (OCl-), chloramine-T (CT) and hydrogen peroxide (H2O2). Analysis of PAI-2 exposed to oxidants by gel filtration chromatography and SDS-PAGE indicated that although the protein could no longer be detected by silver staining, this was not due to fragmentation of the PAI-2 molecule. The sensitivity of a number of serine protease inhibitors (serpins), (eg. alpha 1 proteinase inhibitor (alpha 1PI) and plasminogen activator inhibitor 1 (PAI-1] to oxidative inactivation has been attributed to oxidation of reactive site methionine residues and/or tertiary structural modifications. The relevance of these phenomena and the potential for PAI-2 to be used as a therapeutic inhibitor of urokinase (uPA)-dependent proteolysis during inflammation and tumour metastasis is discussed.  相似文献   

12.
We investigated the effect of agents which raise intracellular cyclic AMP (cAMP) and protein kinase C activators on the production of plasminogen activator inhibitor type-2 (PAI-2) by cultured human promyelocytic leukemia cell line, PL-21. As previously reported, PMA, a protein kinase C activator, showed a strong stimulating effect on the PAI-2 production. 1-oleoyl-2-acetyl-sn-glycerol (OAG), another synthetic protein kinase C activator, also showed a stimulating effect, which was, however, much less than that of PMA. The agents which raise intracellular cAMP, dibutyryl cAMP, 8-bromo cAMP, prostaglandin E1, and 3-isobutyl-1-methyl-xanthine, little increased the PAI-2 production when tested alone, but showed significant synergistic effects with PMA or OAG. The synergistic effect between PMA and dibutyryl cAMP was further verified by SDS-PAGE followed by immunoblotting using a monoclonal antibody against the PAI-2. It is interesting that the up-regulation of PAI-2 by cAMP and the synergistic effect with PKC activators forms a contrast to the previous reported bi-directional regulation of endothelial PAI-1 secretion by PKC activator and cAMP.  相似文献   

13.
BACKGROUND: (E)-2'-deoxy-2'-(fluoromethylene)-cytidine (FMdC), an irreversible inhibitor of ribonucleotide reductase, displays a strong toxicity towards many cell lines derived from human solid tumors, while its activity on leukemia lines is less well-known. The aim of this study was to assess the effect of FMdC on the cell cycle and cell death of human leukemia lines HL-60 and MOLT-4, and murine leukemia L-1210 in vitro. It has been assumed that a prerequisite of FMdC cytotoxicity is intracellular phosphorylation by deoxycytidine kinase (dCK). METHODS:Cell cultures in the exponential phase of growth were exposed to different concentrations of FMdC (10 nM to 10 microM) for 6 and 24 hours. In a parallel set of experiments 1 mM deoxycytidine was added to prevent phosphorylation of the drug by dCK. The DNA and protein content in the cells, as well as Annexin V/PI binding were assessed by flow cytometry. The cell cycle was analyzed by the MacCycle software. RESULTS: The cytotoxic effects of FMdC, i.e., G(1)/S block and cell death were observed, associated with pronounced changes in the protein content. These effects were of variable intensity among the cell lines studied (HL-60 being the most susceptible), and in some cases, were not completely reversed by deoxycytidine excess. CONCLUSIONS: FMdC is a potent cytotoxic/cytostatic agent against human leukemia cell lines in vitro. It also changes the cellular protein content. Unphosphorylated FMdC may slightly influence the cell cycle of some leukemic lines.  相似文献   

14.
The binding of type 1 plasminogen activator inhibitor (PAI-1) to the extracellular matrix (ECM) of cultured bovine aortic endothelial cells was investigated using purified 125I-labeled or L-[35S]methionine-labeled PAI-1 as probes. Little specific binding of latent PAI-1 to ECM previously depleted of endogenous PAI-1 could be demonstrated. In contrast, the guanidine-activated form of PAI-1 bound to ECM in a dose- and time-dependent manner, and binding was saturable. The dissociation constant (Kd) for this interaction was estimated to be 60 nM by Scatchard analysis, and approximately 6 pmol of activated PAI-1 was bound per cm2 of ECM. Binding was relatively specific since unlabeled, activated PAI-1 competed with 35S-labeled PAI-1 for binding to ECM, but latent PAI-1 did not. Moreover, PAI-2, protein C inhibitor (i.e. PAI-3), protease nexin-1, and alpha 2-antiplasmin were not able to compete. Tissue-type plasminogen activator (tPA) also inhibited binding, but diisopropyl fluorophosphate-inactivated tPA did not. Pretreatment of ECM with tPA, urokinase-type PA, or thrombin had no effect on its ability to subsequently bind PAI-1, whereas trypsin, plasmin, and elastase pretreatment greatly reduced its ability to bind PAI-1. Guanidine-activated, radiolabeled PAI-1 resembled active endogenous PAI-1 since it was unstable in solution but stable when bound to ECM. In addition, it formed complexes with tPA that had a relatively low affinity for ECM. These data suggest that ECM of bovine aortic endothelial cells contains a protease-sensitive structure that binds active PAI-1 tightly and relatively selectively and that this association stabilizes PAI-1 against the spontaneous loss of activity that occurs in solution.  相似文献   

15.
16.
The purpose was to characterize plasminogen activator inhibitor type 2 (PAI-2) expression in normal human conjunctiva in vivo and in vitro. PAI-2 antigen was assayed by immunostaining and immunoblotting of extracts from normal human conjunctival epithelial lysates and conditioned media (CM) of cultured human conjunctival keratinocytes. Immunostaining of normal human conjunctival epithelia revealed that PAI-2 was found consistently in the superficial keratinocytes and, in some biopsies, also in the lower keratinocyte layers. In all cases, PAI-2 was concentrated around the cell periphery. In extracts of conjunctival epithelia and cultured conjunctival keratinocytes, PAI-2 had an apparent molecular weight of 45 kDa, consistent with the non-glycosylated form. The majority of PAI-2, approximately 90%, was cell associated, however, a small percentage of PAI-2 was released into the CM in a linear manner with time. PAI-2 in the conditioned medium had a higher molecular weight, consistent with a glycosylated form. Conjunctival PAI-2 was active, as shown by its ability to complex with a target enzyme, urokinase plasminogen activator (uPA). Although PAI-2 was detectable both in monolayer (i.e., relatively undifferentiated) conjunctival keratinocyte cultures as well as in stratified (i.e., more differentiated) cultures, steady state levels of PAI-2 were greater in the latter. PAI-2 is constitutively expressed by normal human conjunctival epithelial cells. The expression of PAI-2 throughout all epithelial layers in some biopsies of conjunctiva in vivo contrasts with the previously established distribution of PAI-2 in corneal epithelia, where it is present exclusively in the most superficial (i.e. most highly differentiated) cells. The role of PAI-2 in either tissue is unclear. However, we speculate that its distinct distribution in conjunctival versus corneal epithelia underscores inherent differences between these tissues, and may reflect specific functions of this proteinase inhibitor in both conjunctival and corneal epithelial cells.  相似文献   

17.
18.
Cell surface, urokinase (u-PA)-mediated, plasminogen activation has recently been recognised as a process integral to extracellular matrix degradation. The primary inhibitor of u-PA activity in the extracellular matrix is plasminogen activator inhibitor type 2 (PAI-2), a serine protease inhibitor. The malignant metastatic phenotype is associated with excessive and uncontrolled, tumour cell-associated, u-PA-mediated, extracellular matrix degradation. Inhibition of the malignant metastatic phenotype via induction of PAI-2 expression and/or inhibition of u-PA expression may represent a novel means via which the metastatic phenotype can be arrested. Agents capable of inducing PAI-2 and/or inhibiting u-PA activity may restrict u-PA-mediated tumour cell proteolysis and facilitate in the development of therapeutic strategies to combat malignant disease. We have identified the hydroxamic acid derivative oxamflatin, previously noted to revert the malignant phenotype in K-ras-transformed NIH-3T3 cells, as capable of upregulating PAI-2 and simultaneously suppressing u-PA expression in two different cell systems. In addition, zymographic analysis indicated that oxamflatin treatment results in a significant reduction in u-PA proteolytic activity in both HT-1080 fibrosarcoma and U-937 histiocytic lymphoma cells. We postulate that oxamflatin represents a novel means by which induction of PAI-2 and concomitant inhibition of u-PA gene and protein expression can be achieved and may be of benefit in inhibiting the malignant metastatic phenotype.  相似文献   

19.
Previous studies have suggested that heterotrimeric G(i) proteins, Src tyrosine kinase and phosphatidylinositol-3 kinase (PI3 Kinase) are involved in signaling events induced by lipopolysaccharide (LPS) leading to pro-inflammatory cytokines gene expression. To investigate the involvement of these mediators in Gram-positive bacteria induced pro-inflammatory cytokine expression, LPS (10 ng/ml), heat killed group B Streptococci (GBS 1 microg/ml) and Staphylococcus aureus (SA 10 microg/ml) were used to induce TNFalpha production in the murine J774A.1 macrophage (M?) cell line and human promonocytic THP-1 cell line. Pertussis toxin (PTx, 1 microg/ml), an inhibitor of G(i) protein; pyrazolopyrimidine-2 (PP2, 1 or 25 microM), a Src tyrosine kinase inhibitor; and LY294002 (100 nM), an inhibitor of PI3 Kinase were used to examine the involvement of G(i), Src tyrosine kinase and PI3 Kinase, respectively, in TNFalpha production. In J774A.1 cells, pretreatment with PTx and PP2 attenuated TNFalpha production induced by LPS (60+/-9% and 81+/-11% inhibition, n=3, p<0.05, respectively), GBS (95+/-1% and 80+/-6% inhibition, n=3, p<0.05, respectively) and SA (51+/-18% and 68+/-16% inhibition, n=4, p<0.05, respectively). However, pretreatment with LY 294002 inhibited LPS induced TNFalpha production (82+/-13% inhibition, n=3, p<0.05), but did not inhibit GBS or SA induced TNFalpha production. In THP-1 cells, pretreatment with PTx, PP2 and LY 294002 inhibited TNFalpha production induced by LPS (84+/-3%, 59+/-12% and 84+/-4% inhibition, n=3, p<0.05, respectively) and SA (56+/-7%, 87+/-1% and 35+/-6% inhibition, n=3, p<0.05, respectively). These data support our hypothesis that G(i)-coupled and Src tyrosine kinase-coupled signaling pathways are involved in both Gram-negative and Gram-positive bacteria induced pro-inflammatory cytokine expression. However, unlike LPS, involvement of PI3 Kinase in Gram-positive bacteria induced signaling pathways are species dependent.  相似文献   

20.
Factor VII-activating protease (FSAP) is a novel plasma-derived serine protease structurally homologous to tissue-type and urokinase-type plasminogen activators. We demonstrate that plasminogen activator inhibitor-1 (PAI-1), the predominant inhibitor of tissue-type and urokinase-type plasminogen activators in plasma and tissues, is an inhibitor of FSAP as well. We detected PAI-1.FSAP complexes in addition to high levels of extracellular RNA, an important FSAP cofactor, in bronchoalveolar lavage fluids from patients with acute respiratory distress syndrome. Hydrolytic activity of FSAP was inhibited by PAI-1 with a second-order inhibition rate constant (K(a)) of 3.38 +/- 1.12 x 10(5) m(-1).s(-1). Residue Arg(346) was a critical recognition element on PAI-1 for interaction with FSAP. RNA, but not DNA, fragments (>400 nucleotides in length) dramatically enhanced the reactivity of PAI-1 with FSAP, and 4 microg.ml(-1) RNA increased the K(a) to 1.61 +/- 0.94 x 10(6) m(-1).s(-1). RNA also stabilized the active conformation of PAI-1, increasing the half-life for spontaneous conversion of active to latent PAI-1 from 48.4 +/- 8 min to 114.6 +/- 5 min. In contrast, little effect of DNA on PAI-1 stability was apparent. Residues Arg(76) and Lys(80) in PAI-1 were key elements mediating binding of nucleic acids to PAI-1. FSAP-driven inhibition of vascular smooth muscle cell proliferation was antagonized by PAI-1, suggesting functional consequences for the FSAP-PAI-1 interaction. These data indicate that extracellular RNA and PAI-1 can regulate FSAP activity, thereby playing a potentially important role in hemostasis and cell functions under various pathophysiological conditions, such as acute respiratory distress syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号