首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of movement of 11 families of transposable elements of Drosophila melanogaster were studied by means of in situ hybridization of probes to polytene chromosomes of larvae from a long-term mutation accumulation experiment. Replicate mutation-accumulation lines carrying second chromosomes derived from a single common ancestral chromosome were maintained by backcrosses of single males heterozygous for a balancer chromosome and a wild-type chromosome, and were scored after 116 generations. Twenty-seven transpositions and 1 excision were detected using homozygous viable and fertile second chromosomes, for a total of 235,056 potential sources of transposition events and a potential 252,880 excision events. The overall transposition rate per element per generation was 1.15 x 10(-4) and the excision rate was 3.95 x 10(-6). The single excision (of a roo element) was due to recombination between the element's long terminal repeats. A survey of the five most active elements among nine homozygous lethal lines revealed no significant difference in the estimates of transposition and excision rates from those from viable lines. The excess of transposition over excision events is in agreement with the results of other in situ hybridization experiments, and supports the conclusion that replicative increase in transposable element copy number is opposed by selection. These conclusions are compared with those from other studies, and with the conclusions from population surveys of element frequencies.  相似文献   

2.
B. Dalby  A. J. Pereira    LSB. Goldstein 《Genetics》1995,139(2):757-766
We developed a screening approach that utilizes an inverse polymerase chain reaction (PCR) to detect P element insertions in or near previously cloned genes in Drosophila melanogaster. We used this approach in a large scale genetic screen in which P elements were mobilized from sites on the X chromosome to new autosomal locations. Mutagenized flies were combined in pools, and our screening approach was used to generate probes corresponding to the sequences flanking each site of insertion. These probes then were used for hybridization to cloned genomic intervals, allowing individuals carrying insertions in them to be detected. We used the same approach to perform repeated rounds of sib-selection to generate stable insertion lines. We screened 16,100 insert bearing individuals and recovered 11 insertions in five intervals containing genes encoding members of the kinesin superfamily in Drosophila melanogaster. In addition, we recovered an insertion in the region including the Larval Serum Protein-2 gene. Examination by Southern hybridization confirms that the lines we recovered represent genuine insertions in the corresponding genomic intervals. Our data indicates that this approach will be very efficient both for P element mutagenesis of new genomic regions and for detection and recovery of ``local' P element transposition events. In addition, our data constitutes a survey of preferred P element insertion sites in the Drosophila genome and suggests that insertion sites that are mutable at a rate of ~10(-4) are distributed every 40-50 kb.  相似文献   

3.
4.
C. Biémont 《Genetica》1992,86(1-3):67-84
This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.  相似文献   

5.
Transposable elements (TEs) are mobile repetitive DNA sequences that constitute a structurally dynamic component of genomes. In order to understand the dynamics of TEs it is necessary to have information about the control of transposition and its dependence of environmental factors. After a great deal of previous work on transposition conducted on long-term mutation accumulation (MA) lines of Drosophila melanogaster started in 1987, only roo out of 16 families was found active in this genotype. Here we test the effect of the modification of the genetic background by introducing a Cy chromosome, and the effect of extreme temperature (28°C) on the transposition rate of roo. Thermal stress did not affect the transposition rate, whereas the presence of a Cy chromosome in heterozygosis lowered it. There was an excess of insertions in the X chromosome, with respect to autosomes, and in the proximal and distal regions of chromosome arms that can be interpreted as target site preference. One of the control lines became highly unstable with mean insertion and excision rates of 3.0 × 10−3 and 8.5 × 10−4, respectively. Instability arose spontaneously during generations of mutation accumulation, and can be attributed to “de novo” mutation. Transposition in the unstable line could be directly studied on the progeny of individual males and females, from where we deduced that transposition occurs mainly, if not exclusively, in males, with a rate of 1.125 insertions per gamete. In situ hybridization with an LTR probe showed that most excisions (12 out of 14) were precise. Our data show the prominent role of genotype in transposition control and can explain rapid turnovers in the genome without increasing the number of copies.  相似文献   

6.
In Drosophila melanogaster, small RNAs homologous to transposable elements (TEs) are of two types: piRNA (piwi-interacting RNA) with size 23-29nt and siRNA (small interfering RNA) with size 19-22nt. The siRNA pathway is suggested to silence TE activities in somatic tissues based on TE expression profiles, but direct evidence of transposition is lacking. Here we developed an efficient FISH (fluorescence in Situ hybridization) based method for polytene chromosomes from larval salivary glands to reveal new TE insertions. Analysis of the LTR-retrotransposon 297 and the non-LTR retroposon DOC shows that in the argonaut 2 (Ago2) and Dicer 2 (Dcr2) mutant strains, new transposition events are much more frequent than in heterozygous strains or wild type strains. The data demonstrate that the siRNA pathway represses TE transposition in somatic cells. Nevertheless, we found that loss of one functional copy of Ago2 or Dcr2 increases somatic transpositions of the elements at a lower level depending on the genetic background, suggesting a quantitative role for RNAi core components on mutation frequency.  相似文献   

7.
Morozova TV  Pasiukova EG 《Genetika》2000,36(4):451-458
Three sublines of an inbred laboratory line of Drosophila melanogaster with the initial copia transposition rate 2 x 10(-2), 2 x 10(-3), and 5 x 10(-4) per copy per generation were reared for several dozen generations under conditions of low effective population size (by full-sib crosses or in a small mass culture of 10 females x 10 males). All six lines were tested for the transposition rate, location pattern, and copy number of copia in euchromatic genome regions and for fitness inferred from the intraspecific competition index. The copia transposition rate remained constant in both versions of the lines with an initially lower rate and decreased by an order of magnitude in both versions of the line with an initially higher rate. New copia insertions behaved as selectively neutral and were accumulated in the genome. Each new copy decreased fitness by less than 1% on average. Some of the existing unfixed insertions remained segregating after long-term inbreeding and were assumed to provide a selective advantage to heterozygotes.  相似文献   

8.
We have investigated by Southern blot hybridization the rate of IS10 transposition and other Tn10/IS10-promoted rearrangements in Escherichia coli and Salmonella strains bearing single chromosomal insertions of Tn10 or a related Tn10 derivative. We present evidence for three primary conclusions. First, the rate of IS10 transposition is approximately 10(-4) per cell per bacterial generation when overnight cultures are grown and plated on minimal media and is at least ten times more frequent than any other Tn10/IS10-promoted DNA alteration. Second, all of the chromosomal rearrangements observed can be accounted for by two previously characterized Tn10-promoted rearrangements: deletion/inversions and deletions. Together these rearrangements occur at about 10% the rate of IS10 transposition. Third, the data suggest that intramolecular Tn10-promoted rearrangements preferentially use nearby target sites, while the target sites for IS10 transposition events are scattered randomly around the chromosome.  相似文献   

9.
The evolutionary role of transposable elements (TEs) is still highly controversial. Two key parameters, the transposition rate (u and w, for replicative and non-replicative transposition) and the excision rate (e) are fundamental to understanding their evolution and maintenance in populations. We have estimated u, w and e for six families of TEs (including eight members: IS1, IS2, IS3, IS4, IS5, IS30, IS150 and IS186) in Escherichia coli, using a mutation accumulation (MA) experiment. In this experiment, mutations accumulate essentially at the rate at which they appear, during a period of 80 500 (1610 generations × 50 lines) generations, and spontaneous transposition events can be detected. This differs from other experiments in which insertions accumulated under strong selective pressure or over a limited genomic target. We therefore provide new estimates for the spontaneous rates of transposition and excision in E. coli. We observed 25 transposition and three excision events in 50 MA lines, leading to overall rate estimates of u ∼ 1.15 × 10–5, w ∼ 4 × 10−8 and e ∼ 1.08 × 10−6 (per element, per generation). Furthermore, extensive variation between elements was found, consistent with previous knowledge of the mechanisms and regulation of transposition for the different elements.  相似文献   

10.
Casals F  González J  Ruiz A 《Chromosoma》2006,115(5):403-412
The abundance and chromosomal distribution of six class-II transposable elements (TEs) of Drosophila buzzatii have been analyzed by Southern blotting and in situ hybridization. These six transposons had been previously found at the breakpoints of inversions 2j and 2q 7 of D. buzzatii. These two polymorphic inversions were generated by an ectopic recombination event between two copies of Galileo, a Foldback element. The four breakpoints became hotspots for TE insertions after the generation of the inversion and the transposons analyzed in this work are considered to be secondary invaders of these regions. Insertions of the six transposons are present in the euchromatin but show an increased density in the pericentromeric euchromatin–heterochromatin transition region and the dot chromosome. They are also more abundant in the inverted segments of chromosome 2 rearrangements. We further observed that the accumulation of TE insertions varies between elements and is correlated between dot, proximal regions, and inverted segments. These observations fully agree with previous data in Drosophila melanogaster and support recombination rate as the chief force explaining the chromosomal distribution of TEs.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.Sequence data from this article have been deposited in the EMBL/GenBank Data Libraries under accession number DQ402469.  相似文献   

11.
Maisonhaute C  Ogereau D  Hua-Van A  Capy P 《Gene》2007,393(1-2):116-126
Transposable elements (TEs), represent a large fraction of the eukaryotic genome. In Drosophila melanogaster, about 20% of the genome corresponds to such middle repetitive DNA dispersed sequences. A fraction of TEs is composed of elements showing a retrovirus-like structure, the LTR-retrotransposons, the first TEs to be described in the Drosophila genome. Interestingly, in D. melanogaster embryonic immortal cell culture genomes the copy number of these LTR-retrotransposons was revealed to be higher than the copy number in the Drosophila genome, presumably as the result of transposition of some copies to new genomic locations [Potter, S.S., Brorein Jr., W.J., Dunsmuir, P., Rubin, G.M., 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427; Junakovic, N., Di Franco, C., Best-Belpomme, M., Echalier, G., 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97, 212-218]. This suggests that so many transpositions modified the genome organisation and consequently the expression of targeted genes. To understand what has directed the transposition of TEs in Drosophila cell culture genomes, a search to identify the newly transposed copies was undertaken using 1731, a LTR-retrotransposon. A comparison between 1731 full-length elements found in the fly sequenced genome (y(1); cn(1)bw(1), sp(1) stock) and 1731 full-length elements amplified by PCR in the two cell line was done. The resulting data provide evidence that all 1731 neocopies were derived from a single copy slightly active in the Drosophila genome and subsequently strongly activated in cultured cells; and that this active copy is related to a newly evolved genomic variant (Kalmykova, A.I., et al., 2004. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol. Biol. Evol. 21, 2281-2289). Moreover, neocopies are shown to be inserted in different sets of genes in the two cell lines suggesting they might be involved in the biological and physiological differences observed between Kc and S2 cell lines.  相似文献   

12.
Two sets of mutation accumulation lines, one reared at 28°C and the other at 24°C, were compared for their transposition and rearrangement rates of eleven transposable element families. The changes affecting mobile elements were analysed by the Southern technique and in situ hybridization. No differences were found between treated and control lines. The role of the host genotype in transposition control and the significance of structural mutations in transposable element dynamics are discussed.  相似文献   

13.
Yu W  Lamb JC  Han F  Birchler JA 《Genetics》2007,175(1):31-39
Global genomic analysis of transposable element distributions of both natural (En/Spm, Ac-Ds, and MuDR/Mu) and modified (RescueMu) types was performed by fluorescence in situ hybridization (FISH) on somatic chromosomes coupled with karyotyping of each chromosome. In lines without an active transposable element, the locations of silent En/Spm, Ac-Ds, and MuDR/Mu elements were visualized, revealing variation in copy number and position among lines but no apparent locational bias. The ability to detect single elements was validated by using previously mapped active Ac elements. Somatic transpositions were documented in plants containing an engineered Mutator element, RescueMu, via use of the karyotyping system. By analyzing the RescueMu lines, we found that transposition of RescueMu in root-tip cells follows the cut-and-paste type of transposition. This work demonstrates the utility of FISH and karyotyping in the study of transposon activity and its consequences.  相似文献   

14.
15.
Mobilization of two P element subfamilies (canonical and O-type) from Drosophila sturtevanti and D. saltans was evaluated for copy number and transposition activity using the transposon display (TD) technique. Pairwise distances between strains regarding the insertion polymorphism profile were estimated. Amplification of the P element based on copy number estimates was highly variable among the strains (D. sturtevanti, canonical 20.11, O-type 9.00; D. saltans, canonical 16.4, O-type 12.60 insertions, on average). The larger values obtained by TD compared to our previous data by Southern blotting support the higher sensitivity of TD over Southern analysis for estimating transposable element copy numbers. The higher numbers of the canonical P element and the greater divergence in its distribution within the genome of D. sturtevanti (24.8%) compared to the O-type (16.7%), as well as the greater divergence in the distribution of the canonical P element, between the D. sturtevanti (24.8%) and the D. saltans (18.3%) strains, suggest that the canonical element occupies more sites within the D. sturtevanti genome, most probably due to recent transposition activity. These data corroborate the hypothesis that the O-type is the oldest subfamily of P elements in the saltans group and suggest that the canonical P element is or has been transpositionally active until more recently in D. sturtevanti.  相似文献   

16.
17.
The stable coexistence of transposable elements (TEs) with their host genome over long periods of time suggests TEs have to impose some deleterious effect upon their host fitness. Three mechanisms have been proposed to account for the deleterious effect caused by TEs: host gene interruptions by TE insertions, chromosomal rearrangements by TE-induced ectopic recombination, and costly TE expression. However, the relative importance of these mechanisms remains controversial. Here, we test specifically if TE expression accounts for the host fitness cost imposed by TE insertions. In the retrotransposon Doc, expression requires binding of the host RNA polymerase to the internal promoter. If expression of Doc elements is deleterious to their host, Doc copies with promoters would be more strongly selected against and would persist in the population for shorter periods of time compared with Docs lacking promoters. We tested this prediction using sequence-specific amplified polymorphism (SSAP) analyses. We compared the populations of these two types of Doc elements in two sets of lines of Drosophila melanogaster: selection-free isogenic lines accumulating new Doc insertions and isogenized isofemale lines sampled from a natural population. We found that (1) there is no difference in the proportion of promoter-bearing and promoter-lacking copies between sets of lines, and (2) the site occupancy distribution of promoter-bearing copies does not skew toward lower frequency compared with that of promoter-lacking copies. Thus, selection against promoter-bearing copies does not appear to be stronger than that of promoter-lacking copies. Our results show that expression is not playing a major role in stabilizing Doc copy numbers.  相似文献   

18.
The insertion site numbers of the retrotransposable elements (TE) 412, gypsy and bilbo were determined in individuals of five distinct natural populations of the endemic species Drosophila madeirensis from the island of Madeira. The TE distributions were compared to those of the paleartic, widespread and phylogenetically closely related species, D. subobscura. In situ hybridization and Southern blots showed that in D. madeirensis the number of insertion sites ranged between 10 and 15, three and six, and 35 and 42 for elements 412, gypsy and bilbo, respectively. The corresponding values for D. subobscura were similar. Two of these elements, 412 and gypsy, had very few insertions in the heterochromatin, unlike bilbo, which displayed a high heterochromatic insertion number. The Southern band polymorphism was very high, leading to within-population variation of 97.2%, whatever the population and the TE concerned. Using the polymorphic TE insertion sites as markers to analyse population structure by AMOVA, adapted for RAPD (Randomly Amplified Polymorphic DNA) data, we found small but significant genetic differences between the populations on Madeira. This slight differentiation, coupled with similar copy numbers for each TE between populations, suggests that the D. madeirensis species consists of a single, only slightly subdivided population. These data also show that insular populations and endemic species of Drosophila can have as many copies of TEs as more widespread species.  相似文献   

19.
We estimated the number of copies for the long terminal repeat (LTR) retrotransposable element roo in a set of long-standing Drosophila melanogaster mutation-accumulation full-sib lines and in two large laboratory populations maintained with effective population size approximately 500, all of them derived from the same isogenic origin. Estimates were based on real-time quantitative PCR and in situ hybridization. Considering previous estimates of roo copy numbers obtained at earlier stages of the experiment, the results imply a strong acceleration of the insertion rate in the accumulation lines. The detected acceleration is consistent with a model where only one (maybe a few) of the approximately 70 roo copies in the ancestral isogenic genome was active and each active copy caused new insertions with a relatively high rate ( approximately 10(-2)), with new inserts being active copies themselves. In the two laboratory populations, however, a stabilized copy number or no accelerated insertion was found. Our estimate of the average deleterious viability effects per accumulated insert [E(s) < 0.003] is too small to account for the latter finding, and we discuss the mechanisms that could contain copy number.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号