首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
铝毒胁迫诱导菜豆柠檬酸的分泌与累积   总被引:11,自引:4,他引:11  
水培试验结果表明 ,铝毒诱导菜豆柠檬酸的分泌与累积存在着显著的基因型差异 .Al3 + 浓度 <5 0 μmol·L-1时 ,柠檬酸分泌量随Al3 + 浓度的增大而增加 ;Al3 + 浓度在 5 0~ 80 μmol·L-1时 ,柠檬酸分泌量随Al3 + 浓度的增大而减小 .不同菜豆基因型以G1984 2的柠檬酸分泌量最大 ,单位干重Al吸收量最小 .铝毒胁迫时 ,不同菜豆基因型叶片柠檬酸累积量无明显差异 ,根系柠檬酸累积量为G1984 2 >AFR >ZPV >G5 2 73.菜豆柠檬酸分泌量缺P处理 <铝毒胁迫 ,5 0 μmol·L-1LaCl3 不能诱导菜豆分泌柠檬酸 ,表明柠檬酸的分泌与累积是菜豆抗铝毒胁迫的重要生理反应  相似文献   

2.
铝胁迫下植物根系的有机酸分泌及其解毒机理   总被引:14,自引:0,他引:14  
酸性土壤中的铝毒害问题,已成为限制植物生长发育的主要因素之一.耐铝植物通过根系分泌有机酸来解除或减轻铝的毒害是外部解铝毒的重要机制.文章对铝胁迫下植物根系分泌有机酸的种类,有机酸解铝毒机理、解铝毒能力,有机酸分泌方式及调控其分泌的主要因素等相关研究进行综述.  相似文献   

3.
铝胁迫下黑麦和小麦根尖分泌有机酸的研究   总被引:3,自引:1,他引:3       下载免费PDF全文
通过建立的活体根培养及微量根尖分泌物收集系统,对铝胁迫下黑麦和小麦根尖分泌的有机酸进行研究。结果表明:50、100、200、300μmol·L-1 AlCl3处理后黑麦根尖分泌柠檬酸和苹果酸,而铝仅诱导小麦根尖分泌苹果酸。铝处理3h后,根尖分泌的苹果酸显著增加,并在9h内维持较高的分泌速率。铝诱导黑麦根尖分泌柠檬酸有明显的迟缓期,Al(300μmol·L-1)处理后的最初3h,根尖分泌的柠檬酸并不显著增加。在铝溶液中添加的阴离子通道抑制剂A-9-C(20、60、100μmol·L-1)显著抑制根尖分泌有机酸。然而,将黑麦根尖浸泡于含异三聚体G蛋白激活剂霍乱毒素(50ng·mL-1)后,根尖分泌的有机酸显著增加。说明建立的微量根尖分泌物收集系统适合于铝诱导根尖分泌有机酸的研究,小麦和黑麦根尖在铝胁迫下以不同模式通过阴离子通道分泌有机酸,而异三聚体G蛋白可能介导根尖分泌有机酸。  相似文献   

4.
植物根系有机酸的分泌和解铝毒作用   总被引:9,自引:2,他引:9  
对植物有机酸的解铝毒作用及释放机制,尤其是对铝刺激的阴离子通道的研究进展作了介绍.  相似文献   

5.
菜豆根构型对低磷胁迫的适应性变化及基因型差异   总被引:48,自引:0,他引:48  
利用特殊设计的营养袋纸培养和分层式磷控释砂培等根系生长系统结合计算机图像分析技术,以基根根长在生长介质各层的相对分布和基根平均生长角度为指标,定量测定菜豆(Phaseolus vulgaris L.)根构型在低磷胁迫下的适应性变化及其与磷效率的关系。结果表明,菜豆根构型对低磷胁迫具有适应性反应,在缺磷条件下基根向地性减弱,基根在生长介质表层相对分布增多、基根平均生长角度(与水平线夹角)变小,从而导  相似文献   

6.
在温室沙培灭菌条件下,以Al-P为磷源、枳为试材、Glomus mosseae (G.m)和G.versiforme (G.v)为菌剂,研究低磷胁迫下AM真菌对枳实生苗干物重、吸磷效应及根系分泌有机酸的影响。结果表明,接种AM真菌显著增加枳地上部、地下部干物重,增幅16.79%~135.25%;同时显著增加其吸磷量,菌丝对植株的吸磷贡献率为17.04%~71.95%(G.m>G.v),施Al-P显著提高菌丝吸磷贡献率。接种AM真菌的根系分泌的有机酸种类与对照有所不同,未接种处理枳分泌的有机酸有草酸、苹果酸、乳酸、乙酸、顺丁烯二酸和柠檬酸等6种,而接种G.m的则检测到草酸、酒石酸、苹果酸、乳酸、乙酸、柠檬酸、丁二酸等7种,G.v处理的检测到酒石酸,接种处理均未检测到顺丁烯二酸;接种丛枝菌根真菌增加了枳根系分泌有机酸的量(比未接种处理增加19.80~56.87 mg/kg,且施用AlPO4后有机酸含量显著增加(增加20.06~21.84 mg/kg);未接种植株根系仅分泌少量有机酸;接种植株根系分泌的有机酸以苹果酸(42.87%)、柠檬酸(39.22%)和草酸(12.06%)为主。  相似文献   

7.
为探究酸性土壤中铁与缺磷和铝毒耦合胁迫的互作关系及其对杉木耐铝性的影响,以杉木优良基因型YX11实生苗为材料,采用控制条件下沙培试验方法,设置对照(CK)、铝胁迫(Al)、缺磷和铝毒耦合胁迫(-P+Al)、缺磷和铝毒耦合胁迫下缺铁处理(-P+Al-Fe),研究缺磷和铝毒耦合胁迫下,外源供铁对杉木幼苗生长、光合生理、植株铝和铁含量、叶片抗性生理的影响。结果表明:(1)Al胁迫处理能显著抑制杉木幼苗生长,-P+Al处理进一步加剧Al诱导的生长受抑,而-P+Al-Fe处理则能显著缓解-P+Al处理引起的生长受抑程度。(2)杉木叶片光合色素含量,叶绿素荧光参数最大荧光(F_(m))、可变荧光(F_(v))、PSⅡ潜在光化学活性(F_(v)/F_(o))、PSⅡ最大光化学效率(F_(v)/F_(m))、光化学淬灭系数(qP)和实际最大量子产额(QY)以及叶片净光合速率在不同胁迫处理下均较CK出现不同程度下降,但-P+Al处理的降幅显著大于-P+Al-Fe处理。(3)杉木叶片SOD、POD、CAT和APX等抗氧化酶活性在不同胁迫处理下均比CK显著增加,但-P+Al处理各抗氧化酶活性增幅显著低于-P+Al-Fe处理,从而导致-P+Al处理叶片形成更多过氧化氢,积累大量丙二醛。(4)杉木根和叶片铝含量在不同胁迫处理下均比CK显著增加,但根和叶片中铝含量在-P+Al-Fe和-P+Al处理间无显著差异,而-P+Al处理根和叶片中铁含量显著高于-P+Al-Fe处理。研究发现,在缺磷和铝毒耦合胁迫下,与缺铁相比,正常供铁能显著促进铁在杉木植株体内的积累,抑制其抗氧化酶活性的增强,促进过氧化氢大量积累,造成光合色素降解,同时对质膜和光合反应中心造成不可逆损伤,显著降低光合效率,加剧铝毒诱导的杉木生长受抑程度。  相似文献   

8.
耐铝的和对铝敏感的玉米自交系根系的有机酸分泌   总被引:18,自引:3,他引:18  
对玉米不同耐铝自交系在含A1^3 (0.1mmol/L)的完全营养液和A1C13 14.3μmol/L CaCl2 227.5μmol/L溶液等两种溶液中根系有机酸的分泌特征进行了研究。铝胁迫下,耐铝自交系Z1的生长与正常偏离不大,表现出较强的耐铝性,而铝敏感自交系Z2的生长则受到明显抑制。2种自交系根系分泌的有机酸种类包括苹果酸、柠檬酸、琥珀酸、马米酸、乙酸和草酸等,以苹果酸为主;其分泌量随铝处理时间而异。在两种溶液中,铝胁迫均可显著增加Z1苹果酸分泌量,且根系内苹果酸含量也显著增加。铝胁迫下,Z1根系NADP—苹果酸脱氢酶活性显著增加。从对试验结果分析得出:根系分泌苹果酸可能是玉米耐铝自交系适应酸性土壤逆境的生理特性之一,而分泌的苹果酸可能是在根系中通过PEP→4OAA→苹果酸途径合成的。  相似文献   

9.
采用土培试验方法研究了低分子量有机酸(柠檬酸、草酸、苹果酸及其混合酸)对大豆磷积累和土壤无机磷形态转化的影响。结果表明:低分子量有机酸促进了大豆植株磷的吸收积累,大豆不同生育时期,不同有机酸对大豆磷的吸收积累均有促进作用,但作用效果有差异;外加低分子量有机酸使无机磷总量、难溶态磷(Ca10-P、Al-P和O-P)含量均显著降低,而可溶态磷的Ca8-P含量显著增加,柠檬酸和草酸使Ca2-P含量显著增加,表明低分子量有机酸促进了土壤难溶态磷向可溶态磷转化,作用大小顺序为柠檬酸>草酸>混合酸>苹果酸;同时,大豆根系分泌物也促进部分难溶态磷向可溶态磷转化,使无机磷总量、除Ca2-P外的其他无机磷组分均有所降低,按磷释放比例的大小来看,对大豆吸磷的贡献大小顺序为O-P>Fe-P>Ca10-P>Al-P>Ca8-P>Ca2-P.  相似文献   

10.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

11.
Gaume  Alain  Mächler  Felix  Frossard  Emmanuel 《Plant and Soil》2001,234(1):73-81
Root exudation of organic acids as Al-chelating compounds and P nutrition have been suggested to play a major role in Al-resistance in higher plants. Effects of Al exposure on maize plant growth, and organic acid root content and root exudation under various levels of P nutrition were examined. Sikuani, a Colombian maize cultivar tolerant to acid soils with high Al saturation, and Corso, a Swiss cultivar, were grown in sterile hydroponic conditions for 21 days. Al-caused inhibition of root growth was lower in Sikuani than in Corso. Al effect on plant growth was decreased with increasing P content in roots. Al content in roots increased with increasing P content and was higher in Sikuani than in Corso. When exposed to Al, the contents in root apices as well as the root exudation of citric and malic acids in Corso and citric, malic and succinic acids in Sikuani increased, and were higher in Sikuani than in Corso. Increased PEP carboxylase (PEPC) activity in root apices after Al exposure partially explained the variations of organic acid content in the roots. These Al-induced changes in PEPC activity, organic acid content and exudation were reduced in plants supplied with higher P concentrations during the 21 days prior to treatment. Increased secretion of organic acids after exposure to Al appeared to be specific to Al and was not totally explained by increased root content in organic acids.  相似文献   

12.
Using common beans differing greatly in the response to photoperiod and low-phosphorus (P) stress, we investigated their responses to acidity and aluminum (Al)toxicity and the relationship between Al tolerance and organic acid exudation under Al or low P stress. A genotype Ginshi was found to be sensitive to low pH treatment. When exposed to pH 4.5, serious curvature in the root tips of cv. Ginshi was observed; however, it was completely corrected by the application of 5 or 10 μmol/L AlCl3; increasing calcium (Ca) could ameliorate Al toxicity, but it could not correct root curvature at pH 4.5. Common beans showed significant differences in both root growth and Al tolerance, and the varieties from the Andes were more tolerant to Al toxicity than those from the Mesoamerican origin. In the presence of 50 μmol/L AlCl3,all the common bean genotypes exuded citrate, and a significant difference in the amounts of citrate was observed among genotypes. The genotypes originated in the Mesoamerica tended to release more citrate than other origins in the presence of Al. The P-inefficient genotype DOR364 exuded more citrate than the P-efficient genotype G19833 in the presence of 50 μmol/L AlCl3, whereas no organic acids were detected in root exudates under low-P stress. A reduction of citrate exudation in the DOR364, but a slight increase of citrate exudation in the G19833, was observed under Al stress after they were exposed to 6-d P starvation. These results suggest that different low-P or Al tolerance in common beans might not be associated with organic acid exudation.  相似文献   

13.
Kania  Angelika  Langlade  Nicolas  Martinoia  Enrico  Neumann  Günter 《Plant and Soil》2003,248(1-2):117-127
A possible contribution of alterations in metabolic sequences involved in citrate catabolism, to intracellular accumulation and subsequent release of citrate was investigated in cluster roots of phosphorus (P)-deficient white lupin (Lupinus albus L.). Citrate accumulation during maturation of root clusters was associated with decreased levels of intracellular soluble Pi and ATP, and with reduced rates of respiration. Inhibitor studies with KCN and salicylhydroxamic acid (SHAM) suggest a reduced capacity of both the cytochrome pathway and of the alternative respiration with a concomitant decrease of immunochemically detectable protein levels of the alternative oxidase. Reduced respiration seems to be related to a general impairment of the respiratory system, rather than to limitation of respiratory substrates such as Pi and adenylates, as indicated by the absence of stimulatory effects of the uncoupler CCCP. The citrate/malate ratio in juvenile root clusters with high rates of respiration and low inherent levels of citrate accumulation was increased by short-term application (4–8 h) of azide and SHAM as respiration inhibitors. During maturation of root clusters, a shift from intracellular malic acid to citric acid accumulation was associated also with down-regulation of ATP citrate lyase (ACL), which catalyzes cleavage of citrate into acetyl-CoA and oxaloacetate with a putative function as anapleurotic source for the production of acetyl-CoA under P-deficient conditions. Inhibition of nitrate uptake and assimilation is a general response to P limitation in many plant species including white lupin. Reduced consumption of the amino acceptor 2-oxoglutaric acid as a product of citrate turnover may therefore contribute to increased citrate accumulation. Accordingly, artificial inhibition of nitrate reduction by localized application of tungstate significantly increased the citrate/malate ratio in juvenile root clusters. Lowering the cytosolic pH by external application of propionate stimulated citrate and malate exudation in non-cluster lateral roots and in developing root clusters. This effect was reverted by preincubation with phosphonate to buffer the cytosol. The results suggest that acidification of the cytosol may be an important factor, triggering the transient release of citrate and protons from mature root clusters in P-deficient white lupin.  相似文献   

14.
Aluminum (Al) toxicity is the primary factor limiting crop production on acidic soils (pH values of 5 or below), and because 50% of the world’s potentially arable lands are acidic, Al toxicity is a very important limitation to worldwide crop production. This review examines our current understanding of mechanisms of Al toxicity, as well as the physiological, genetic and molecular basis for Al resistance. Al resistance can be achieved by mechanisms that facilitate Al exclusion from the root apex (Al exclusion) and/or by mechanisms that confer the ability of plants to tolerate Al in the plant symplasm (Al tolerance). Compelling evidence has been presented in the literature for a resistance mechanism based on exclusion of Al due to Al-activated carboxylate release from the growing root tip. More recently, researchers have provided support for an additional Al-resistance mechanism involving internal detoxification of Al with carboxylate ligands (deprotonated organic acids) and the sequestration of the Al-carboxylate complexes in the vacuole. This is a field that is entering a phase of new discovery, as researchers are on the verge of identifying some of the genes that contribute to Al resistance in plants. The identification and characterization of Al resistance genes will not only greatly advance our understanding of Al-resistance mechanisms, but more importantly, will be the source of new molecular resources that researchers will use to develop improved crops better suited for cultivation on acid soils.  相似文献   

15.
外源有机酸对玉米磷吸收及其生长发育的影响   总被引:2,自引:0,他引:2  
以玉米品种郑单958为材料,通过施加外源有机酸的盆栽试验方法,设置了土壤中不施磷肥和有机酸(CKo)、仅施磷肥(CKP)、施柠檬酸(Tca)、施苹果酸(Tma)和施草酸(Toa)处理,研究外源有机酸对玉米生长过程中的磷素吸收及其生长发育的影响.结果显示:(1)3种外源有机酸均可显著提高土壤中速效磷含量和磷素利用效率,Tca、Tma和Toa处理玉米根际土壤的速效磷含量分别为CKo的2.25、1.96和2.04倍,且各处理间的磷素利用效率依次为:CKp>Tca>Tma>Toa>CKo.(2)在拔节期、抽雄期和成熟期,Tca处理玉米的磷素利用效率依次为CKo的1.16、1.05和1.04倍.(3)3种外源有机酸均可显著提高玉米根系体积和根系活力、单株玉米的氮磷钾的累积量、玉米的生物量及相对籽粒产量.研究表明,外源柠檬酸、苹果酸和草酸均可显著提高玉米根际土壤中固态磷的溶解,促进植株体内营养元素的累积,保证植物生长发育的需要,从而提高玉米的生物量和产量;并以外源柠檬酸处理对玉米磷吸收及其生长发育效果最好.  相似文献   

16.
Malate plays a central role in plant nutrition   总被引:5,自引:0,他引:5  
Schulze  J.  Tesfaye  M.  Litjens  R. H. M. G.  Bucciarelli  B.  Trepp  G.  Miller  S.  Samac  D.  Allan  D.  Vance  C. P. 《Plant and Soil》2002,247(1):133-139
Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, thus fueling nitrogenase. Malate also provides the carbon skeletons for assimilation of fixed nitrogen into amino acids. During phosphorus deficiency, malate is frequently secreted from roots to release unavailable forms of phosphorus. Malate is also involved with plant adaptation to aluminum toxicity. To define the genetic and biochemical regulation of malate formation in plant nutrition we have isolated and characterized genes involved in malate metabolism from nitrogen-fixing root nodules of alfalfa and those involved in organic acid excretion from phosphorus-deficient proteoid roots of white lupin. Moreover, we have overexpressed malate dehydrogenase in alfalfa in attempts to improve nutrient acquisition. This report is an overview of our efforts to understand and modify malate metabolism, particularly in the legumes alfalfa and white lupin.  相似文献   

17.
Jones  David L. 《Plant and Soil》1998,205(1):25-44
Organic acids, such as malate, citrate and oxalate, have been proposed to be involved in many processes operating in the rhizosphere, including nutrient acquisition and metal detoxification, alleviation of anaerobic stress in roots, mineral weathering and pathogen attraction. A full assessment of their role in these processes, however, cannot be determined unless the exact mechanisms of plant organic acid release and the fate of these compounds in the soil are more fully understood. This review therefore includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization). In summary, the release of organic acids from roots can operate by multiple mechanisms in response to a number of well-defined environmental stresses (e.g., Al, P and Fe stress, anoxia): These responses, however, are highly stress- and plant-species specific. In addition, this review indicates that the sorption of organic acids to the mineral phase and mineralisation by the soil's microbial biomass are critical to determining the effectiveness of organic acids in most rhizosphere processes.  相似文献   

18.
  总被引:2,自引:0,他引:2  
  相似文献   

19.
Aluminum-induced secretion of both citrate and malate in rye   总被引:4,自引:1,他引:4  
Feng Li  Xiao  Feng Ma  Jian  Matsumoto  Hideaki 《Plant and Soil》2002,242(2):235-243
Aluminum (Al)-resistant mechanisms responsible for Al-induced secretion of organic acids are poorly understood. In this study, we characterized the Al-induced secretion of both citrate and malate from rye (Secale cereale L. cv. King). Secretion of organic acids increased with increasing concentration (10, 30 and 50 M) and duration of Al treatments. Neither phosphorous (P) deficiency up to 15 days nor addition of 50M lanthanum, 50 M lead, 10 M cadmium, or 200 M manganese caused secretion of organic acids, suggesting that this secretion was a specific response to Al stress. Aluminum activated citrate synthase, the main enzyme for the synthesis of citrate, but its activation occurred only in the root tip. The elongation of roots of an Al-sensitive cultivar of wheat (Tritium aestivum L. cv. Scout 66) was not inhibited by 50 M Al in the presence of externally applied 50 M citrate or 400 M malate. The secretion of citrate and malate from intact rye roots exposed to 50 M Al corresponded to 31.3 ± 1.7 M and 11.5 ± 2.5 M, respectively, in the rhizosphere based on an assumption of a 2 mm thick unstirred layer around root tips. This result indicated that Al-resistance in rye was achieved by the Al-induced synthesis of citrate in root apices followed by Al-induced specific secretion of citrate from root tips.  相似文献   

20.
The nature and quantity of low-molecular organic acids (LOAs) exuded by the roots of nine species of calcifuge and nine species of acidifuge wild plants from northern Europe were determined by ion chromatography. Particular attention was paid to differences between the calcifuge and the acidifuge species in the proportions of different LOAs in their root exudates. Great differences in mol% root exudation between the calcifuge and the acidifuge species were found in some acids. The calcifuge species exuded more acetic acid, the acidifuge species more oxalic acid and much more citric acid. In three calcifuge species, however, root exudation of oxalic acid was appreciable, whereas acetic acid exudation was low in these species. The phosphate- and Fe-solubilizing ability of eight LOAs in a rhizosphere limestone soil was also tested. Oxalic acid was the most efficient phosphate solubilizer and citric acid, by far, the most efficient Fe-solubilizer at the concentration (10 mM) tested. It might be hypothesized that acidifuge species use oxalate to solubilize phosphate and citrate to solubilize Fe, in limestone soil. The inability of calcifuge species to grow in limestone soil might, therefore, be due to low root exudation of these acids and, as a result, inability to solubilize phosphate and Fe in limestone soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号