首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The first step in the formation of the nucleosome is commonly assumed to be the deposition of a histone H3-H4 heterotetramer onto DNA. Antisilencing function 1 (ASF1) is a major histone H3-H4 chaperone that deposits histones H3 and H4 onto DNA. With a goal of understanding the mechanism of deposition of histones H3 and H4 onto DNA, we have determined the stoichiometry of the Asf1-H3-H4 complex. We have established that a single molecule of Asf1 binds to an H3-H4 heterodimer using gel filtration, amino acid, reversed-phase chromatography, and analytical ultracentrifugation analyses. We demonstrate that Asf1 blocks formation of the H3-H4 heterotetramer by a mechanism that likely involves occlusion of the H3-H3 dimerization interface.  相似文献   

5.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   

6.
A particle obtained by nuclease digestion of nucleohistone complexes prepared by direct mixing of histones with DNA in 0.15 M NaCl was indistinguishable by composition and physical properties from nucleosome cores prepared under the same conditions from nucleohistone preannealed in 0.6 M NaCl. We show here that different photo-cross-links form when these particles are prepared from H3 labeled with photoaffinity reagents on the unique histone H3 cysteine. H3-H3 histone dimers were dominant when the particles were prepared by dilution of the nucleohistone from 0.6 M NaCl while H3-H2B and H3-H4 histone dimers were prominent if the nucleohistone complex was prepared directly in 0.15 M NaCl. Peptide mapping of the novel H3-H4 and H3-H2B dimers showed that Cys-110 of histone H3 is cross-linked to the 18 amino acid C-terminal end of H4 or to the 66 amino acid C-terminal half of H2B.  相似文献   

7.
Chaperoning the histone H3 family   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

10.
Equimolar mixtures of histones H3 and H4 have been reconstituted onto DNA of nucleosome core size. Two distinct complexes are formed in a relative abundance that depends on the starting ratio of H3 + H4 to DNA. One of these complexes contains two H3-H4 dimers for each DNA molecule, and has a sedimentation coefficient of 7.5S. The other complex contains an octamer consisting of four H3-H4 dimers, and has a sedimentation coefficient of 10.4S. On the basis of these measurements, we conclude that the octamer complex (but not the tetramer complex) is a fully folded, compact structure resembling the nucleosome.  相似文献   

11.
DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)–like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5–H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5–H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family.  相似文献   

12.
V Jackson 《Cell》1978,15(3):945-954
A new procedure is described which allows selective reversal of formaldehyde cross-linking in both histone-histone and histone-DNA of nuclei isolated from calf thymus. All ten possible dimers of the four non-H1 histones, H3, H2B, H2A and H4, are observed, the major dimers being H3-H3, H3-H2A, H2B-H2A, H2a-H2A and two separate dimers of H2B-H4. Although oligomers of the non-H1 histones are formed by prolonged treatment with this reagent, 50% of the histones continue to remain resistant to cross-linking with each other. For those histones which cross-linking with each other. For those histones which cross-link, the site of cross-linking within the molecules is located in the "core" (trysin-resistant) regionand therfore indicates proximities for these molecules within the nucleosome. The core region also cross-links to DNA, indicating intimate interactions between this region in all the non-H1 histones with DNA.  相似文献   

13.
Chromatin assembly: biochemical identities and genetic redundancy.   总被引:15,自引:0,他引:15  
Investigations on chromatin assembly in vitro implicate chromatin assembly factor 1 (CAF1) as a chaperone for histones H3/H4 and nucleosome assembly protein 1 (NAP1) as a chaperone for histones H2A/H2B. Deletion analysis of CAF1 in vivo suggests multiple redundant pathways for deposition of the histones. Histone deposition requires acetylation of the amino-terminal tails and analysis of mutants suggests a specific but redundant role for acetylation of the tails in assembly. Furthermore, studies on the HAT1 acetyltransferase raise the possibility that acetylation of histones occurs following their transport into the nucleus but prior to their deposition onto DNA. Identification of the factors involved in the redundant pathways of assembly is awaited.  相似文献   

14.
15.
Mixtures of histones H3 and H4 were examined by analytical ultracentrifugation and circular dichroism to determine their association behavior and secondary structure content in high and low ionic strength solvents containing chloride, phosphate, or sulfate. H3 and H4 were also cross-linked by using DSP in order to directly trap any intermolecular interactions occurring in solution. While H3 and H4 can exist as an H3-H4 dimer under limited conditions, they behave as a stable (H3-H4)2 tetramer under most conditions, particularly those which are physiologically relevant. In chloride-containing solutions, the equilibrium between H3-H4 and (H3-H4)2 is responsive to changes in ionic strength and paralleled by large changes in alpha-helicity. In sulfate- and phosphate-containing solutions, the equilibrium is again governed by ionic strength, but there are no significant changes in secondary structure accompanying shifts in the equilibrium. Small oligomers can be formed in the presence of sulfate and phosphate and trapped by the cross-linking reagent; these oligomers are much smaller than those formed in chloride-containing solutions. However, addition of the H2A-H2B dimer into the system prevents aggregation of the (H3-H4)2 tetramer by acting as a "molecular cap" and thus regulating the assembly pathway toward the formation of tripartite octamers. The observed assembly of H3 and H4 into a stable, tetrameric complex supports the concept of the core histone octamer having a tripartite organization in solution rather than being organized as two heterotypic tetramers.  相似文献   

16.
The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone–histone interactions or the direct role of Asf1 in the formation or disassembly of histone–DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone–DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin.  相似文献   

17.
18.
The possibility has been investigated of selectively spin-labelling the cysteine residues of histone H3 in chromatin and probing by ESR conformational changes affecting the labelled area as the molecular environment is altered. About 90% of bound labels are attached to the thiol groups and are strongly immobilized in deep crevices. The remaining labels are bound to amino groups mainly on histone H1, giving rise to a more mobile component in the chromatin spectrum. No conformational changes involving the labelled cysteins could be detected as the histones were dissociated stepwise from the complex by NaCl, but treatment with urea led to a cooperative increase in mobility, indicating that the hydrophobic region around the cysteine residues is folded in a compact tertiary structure to which histone H4 may be bound in the native complex, but which is not affected by dissociation of the H3-H4 unit from the DNA. In addition, chymotryptic disruption of the chromatin has been followed and an estimate made from the rotational correlation times of the size and origin of the digestion fragment carrying spin-labelled cysteine 110.  相似文献   

19.
Deposition of the major histone H3 (H3.1) is coupled to DNA synthesis during DNA replication and possibly DNA repair, whereas histone variant H3.3 serves as the replacement variant for the DNA-synthesis-independent deposition pathway. To address how histones H3.1 and H3.3 are deposited into chromatin through distinct pathways, we have purified deposition machineries for these histones. The H3.1 and H3.3 complexes contain distinct histone chaperones, CAF-1 and HIRA, that we show are necessary to mediate DNA-synthesis-dependent and -independent nucleosome assembly, respectively. Notably, these complexes possess one molecule each of H3.1/H3.3 and H4, suggesting that histones H3 and H4 exist as dimeric units that are important intermediates in nucleosome formation. This finding provides new insights into possible mechanisms for maintenance of epigenetic information after chromatin duplication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号