首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid adaptation of Streptococcus mutans UA159 involves several different mechanisms, including the ability to alter its proportion of long-chain, monounsaturated membrane fatty acids (R. G. Quivey, Jr., R. Faustoferri, K. Monahan, and R. Marquis, FEMS Microbiol. Lett. 189:89-92, 2000). In the present study, we examined the mechanism and timing of changes in fatty acid ratios and the potential benefit that an increased proportion of long-chained fatty acids has for the organism during growth at low pH. Cells taken from steady-state cultures at intermediate pH values of 6.5, 6, and 5.5 showed incremental changes from the short-chained, saturated membrane fatty acid profile normally seen in pH 7 cultures to the long-chained, monounsaturated fatty acids more typically observed in acidic cultures (pH 5). Our observations showed that the bacterium was capable of effecting the majority of changes in approximately 20 min, far less than one generation time. However, reversion to the distribution of fatty acids seen in cells growing at a pH of 7 required a minimum of 10 generations. Fatty acid composition analysis of cells taken from cultures treated with chloramphenicol suggested that the changes in fatty acid distribution did not require de novo protein synthesis. Cells treated with the fatty acid biosynthesis inhibitor cerulenin were unable to alter their membrane fatty acid profiles and were unable to survive severe acidification. Results presented here indicate that membrane fatty acid redistribution is important for low pH survival and, as such, is a component of the S. mutans acid-adaptation arsenal.  相似文献   

2.
Previously, it has been demonstrated that the membrane fatty acid composition of Streptococcus mutans is affected by growth pH (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004; R. G. Quivey, Jr., R. Faustoferri, K. Monahan, and R. Marquis, FEMS Microbiol. Lett. 189:89-92, 2000). Specifically, the proportion of monounsaturated fatty acids increases when the organism is grown in acidic environments; if the shift to increased monounsaturated fatty acids is blocked by the addition of a fatty acid biosynthesis inhibitor, the organism is rendered more acid sensitive (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004). Recently, work with Streptococcus pneumoniae has identified a novel enzyme, FabM, responsible for the production of monounsaturated fatty acids (H. Marrakchi, K. H. Choi, and C. O. Rock, J. Biol. Chem. 277:44809-44816, 2002). Using the published S. pneumoniae sequence, a putative FabM was identified in the S. mutans strain UA159. We generated a fabM strain that does not produce unsaturated fatty acids as determined by gas chromatography of fatty acid methyl esters. The mutant strain was extremely sensitive to low pH in comparison to the wild type; however, the acid-sensitive phenotype was relieved by growth in the presence of long-chain monounsaturated fatty acids or through genetic complementation. The strain exhibited reduced glycolytic capability and altered glucose-PTS activity. In addition, the altered membrane composition was more impermeable to protons and did not maintain a normal DeltapH. The results suggest that altered membrane composition can significantly affect the acid survival capabilities, as well as several enzymatic activities, of S. mutans.  相似文献   

3.
Low pH-induced membrane fatty acid alterations in oral bacteria   总被引:4,自引:0,他引:4  
Four oral bacterial strains, of which two are considered aciduric and two are considered acid-sensitive, were grown under glucose-limiting conditions in chemostats to determine whether their membrane fatty acid profiles were altered in response to environmental acidification. Streptococcus gordonii DL1, as well as the aciduric strains S. salivarius 57.I, and Lactobacillus casei 4646 increased the levels of mono-unsaturated membrane fatty acids. The non-aciduric strain S. sanguis 10904 did not alter its membrane composition in response to pH values examined here. Thus, in response to low pH, aciduric oral bacteria alter their membrane composition to contain increased levels of long-chained, mono-unsaturated fatty acids. This suggests that membrane fatty acid adaptation is a common mechanism utilized by bacteria to withstand environmental stress.  相似文献   

4.
Cells of Streptococcus mutans UA159 physiologically adapted to acidification during growth at pH 5 in glucose-limited chemostat cultures were enriched in mono-unsaturated and longer chain fatty acids compared with unadapted cells grown under the same conditions but at pH 7. Ratios of unsaturated to saturated fatty acids in the cells were, respectively, 1.2 and 0.3. Cyclopropane fatty acids were not detected. Streptococcus sobrinus 6715, which is known to have minimal acid-adaptive capacity, showed only minimal change in membrane fatty acids.  相似文献   

5.
NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites.  相似文献   

6.
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with >=16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.  相似文献   

7.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3-7-fold) and phosphatidylethanolamine (2-3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

8.
Incorporation of fatty acids by Streptococcus mutans   总被引:1,自引:0,他引:1  
In a series of investigations into the cariogenicity of Streptococcus mutans, we studied the incorporation of exogenous fatty acids with reference to glucosyltransferase secretion and membrane fatty acid changes. When cells were grown with different fatty acids, both saturated and unsaturated fatty acids were readily incorporated into the membrane lipids and were biotransformed and elongated preferentially to the longer 16- and 18-carbon-chain fatty acids. This incorporation and chain-elongation led to significant changes in fatty acids composition. By adding fatty acids to the medium, it was possible to appropriately modify the degree of unsaturation and the relative ratio between specific fatty acids in the membrane lipids of S. mutans.  相似文献   

9.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3–7-fold) and phosphatidylethanolamine (2–3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

10.
Previous studies have shown that aldosterone treatment of amphibian epithelial cells results not only in stimulation of Na(+) absorption but also in changes in phospholipid composition which are necessary for the mineralocorticoid action of aldosterone. The present study was designed to investigate the effect of aldosterone on phospholipids of mammalian epithelia. Phospholipid and fatty acid composition was examined in colonic epithelium (mineralocorticoid target tissue) and thymus (non-mineralocorticoid but glucocorticoid target tissue) of rats which had received aldosterone or vehicle by a miniosmotic pump for 7 days. Aldosterone increased the mass of colonic phospholipids relative to cellular proteins with concomitant changes in the percentage distribution of fatty acids, whereas the relative distribution of membrane phospholipds was not changed. Phosphatidylcholine increased the content of polyunsaturated and decreased that of monounsaturated fatty acids, which predominantly reflected the accretion of arachidonic and a decrease in oleic and palmitoleic acids. Within the phosphatidylethanolamine subclass, pretreatment of rats with aldosterone decreased the content of monounsaturated fatty acids (predominantly oleic and palmitoleic acid) and of n-3 fatty acids, and increased the content of saturated fatty acids (palmitic acid). The saturated-to-nonsaturated fatty acid ratio also significantly increased after aldosterone treatment. No changes in thymic phospholipids were seen. The results are consistent with the contention that aldosterone specifically modulates phospholipid concentration and metabolism in mineralocorticoid target tissue. The changes in phospholipid content and its fatty acid composition during the fully developed effect of aldosterone may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.  相似文献   

11.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

12.
S V Avery  N G Howlett    S Radice 《Applied microbiology》1996,62(11):3960-3966
One major mechanism of copper toxicity towards microorganisms is disruption of plasma membrane integrity. In this study, the influence of plasma membrane fatty acid composition on the susceptibility of Saccharomyces cerevisiae to Cu2+ toxicity was investigated. Microbial fatty acid composition is highly variable, depending on both intrinsic and environmental factors. Manipulation was achieved in this study by growth in fatty acid-supplemented medium. Whereas cells grown under standard conditions contained only saturated and monounsaturated fatty acids, considerable incorporation of the diunsaturated fatty acid linoleate (18:2) (to more than 65% of the total fatty acids) was observed in both whole-cell homogenates and plasma membrane-enriched fractions from cells grown in linoleate-supplemented medium. Linoleate enrichment had no discernible effect on the growth of S. cerevisiae. However, linoleate-enriched cells were markedly more susceptible to copper-induced plasma membrane permeabilization. Thus, after addition of Cu(NO3)2, rates of cellular K+ release (loss of membrane integrity) were at least twofold higher from linoleate-supplemented cells than from unsupplemented cells; this difference increased with reductions in the Cu2+ concentration supplied. Levels of cellular Cu accumulation were also higher in linoleate-supplemented cells. These results were correlated with a very marked dependence of whole-cell Cu2+ toxicity on cellular fatty acid unsaturation. For example, within 10 min of exposure to 5 microM Cu2+, only 3% of linoleate-enriched cells remained viable (capable of colony formation). In contrast, 100% viability was maintained in cells previously grown in the absence of a fatty acid supplement. Cells displaying intermediate levels of linoleate incorporation showed intermediate Cu2+ sensitivity, while cells enriched with the triunsaturated fatty acid linolenate (18:3) were most sensitive to Cu2+. These results demonstrate for the first time that changes in cellular and plasma membrane fatty acid compositions can dramatically alter microbial sensitivity to copper.  相似文献   

13.
刘怀龙  孟祥晨 《微生物学报》2008,48(11):1459-1465
[目的]筛选具有较强酸适应能力的菌株,研究酸适应对其膜脂肪酸组成和膜蛋白表达的影响.[方法]从20株菌中筛选出一株具有较强酸适应能力的乳酸乳球菌KLDS4.0312,以GC-MS法测定该菌酸适应前后膜脂肪酸组成变化;对酸适应前后该菌膜蛋白的差异表达进行双向电泳分析.[结果]酸适应后,该菌膜不饱和脂肪酸含量从30.77%上升到42.93%,饱和脂肪酸含量从69.23%下降到57.07%,且有一种新的长链单不饱和脂肪酸C<,19:1>-n6被诱导产生.酸适应过程中至少有65个蛋白质点表达出现显著差异,其中上调的蛋白质点有43个,减弱表达的蛋白质点有22个.而添加氯霉素后,菌株的酸适应能力消除,可能与氯霉素抑制新蛋白的合成有关.[结论]说明细胞膜脂肪酸组成的适应性改变和应激蛋白的诱导产生是该菌主要的酸适应机制.  相似文献   

14.
The lipids in callus cultures of Hydnocarpus anthelminthica were studied after 60, 160 and 460 days of growth. In each of the cultures the lipid classes usually found in plant tissue cultures were detected. With increasing age of the cultures the total lipid content as well as the proportions of triglycerides decreased. The major constituent fatty acids of the total lipids were palmitic and linoleic acids. Small amounts of cyclopentenyl fatty acids were also present. The proportions of saturated straight-chain fatty acids increased with the age of the cultures whereas the proportions of monounsaturated straight-chain fatty acids decreased. Only small changes were observed with polyunsaturated fatty acids. The content of cyclopentenyl fatty acids rose with the age of the cultures. The monounsaturated straight-chain fatty acids consisted of mixtures of isomers whose composition changed with the age of the cultures. In contrast, the polyunsaturated straight-chain fatty acids belonged exclusively to the Δ9 series, regardless of the age of the cultures.  相似文献   

15.
The phospholipids of Pseudomonas putida P8 contain monounsaturated fatty acids in the cis and trans configuration. Cells of this phenol-degrading bacterium change the proportions of these isomers in response to the addition or elimination of a membrane active compound such as 4-chlorophenol. This study undoubtedly reveals that the cis unsaturated fatty acids are directly converted into trans isomers without involvement of de novo synthesis of fatty acids. Oleic acid, which cannot be synthesized by this bacterium, was incorporated as a cis unsaturated fatty acid marker in the membrane lipids of growing cells. The conversion of this fatty acid into the corresponding trans isomer was demonstrated by gas chromatographic-mass spectrometric analysis and use of 14C-labeled oleic acid. Separation and isolation of the cellular membranes showed that the fatty acid isomerase is located in the cytoplasmic membrane of P. putida P8.Abbreviation 4-CP 4-chlorophenol  相似文献   

16.
Qualitative and quantitative changes were observed in lipids, poly--hydroxybutyrate (PHB), and a cell wall peptidoglycan consitutent in a marine bacterial isolate during starvation for 24 h in an energy and nutrient-free medium. While the amount and composition of the membrane fatty acids fluctuated within the first hours of starvation, the total amount of fatty acids decreased during the starvation period. Furthermore, the ratio of monounsaturated to saturated fatty acids decreased and the proportion of short chain fatty acids increased. In the very early phase of starvation the bacteria contained PHB, which had been accumulated during the growth phase, but after 3 h no PHB was detected. Cells starved for phosphorus showed a different pattern as PHB was initially accumulated and did not decrease until 5 h of starvation. Synthesis of the cell wall amino acid d-alanine was initiated during the first phase of starvation. The effects of these changes on membrane fluidity and uptake of substrates as well as the use of fatty acids and PHB as energy resources during starvation are discussed.Non-common abbreviations FID flame ionization detector - GC gas chromatography - HFBA heptafluorobutyric anhydride - MS mass spectrometry - NSS nine salt solution - PHB poly--hydroxybutyrate - PFB pentafluorobenzylbromide  相似文献   

17.
Since it has been earlier reported that D-galactosamine induces an inhibition of palmitoylcarnitine transferase I and a depletion of mitochondrial phospholipids which were both prevented by clofibrate, an evaluation of the effects of these drugs on mitochondrial fatty acid composition was made. Galactosamine does not alter the fatty acid pattern of these fatty acids whereas clofibrate induces a 2-fold increase in monounsaturated/saturated fatty acids ratio and a 10-fold decrease of the 20:4 (n - 6)/20:3 (n - 6) ratio in phosphatidylcholine. These alterations suggest an increase of delta 9-desaturation and a decrease of delta 5-desaturation. To determine whether the drug-induced changes in mitochondrial phospholipids has an effect on the physical properties of the membrane, the lipid structural order of mitochondrial preparations was studied using the lipophilic probes DPH and TMA-DPH. Mitochondrial isolated either from galactosamine- or clofibrate-treated rats showed a decrease in fluorescence polarization, indicating an overall decrease in lipid structural order. This alteration is more drastic when both drugs are administered. This phenomenon suggests drastic changes in the bulk phase of inner mitochondrial membrane lipids after treatments and could explain the altered kinetic properties of palmitoylcarnitine transferase I.  相似文献   

18.
Fatty-acid biosynthesis by a branched-chain alpha-keto acid dehydrogenase (bkd) mutant of Streptomyces avermitilis was analyzed. This mutant is unable to produce the appropriate precursors of branched-chain fatty acid (BCFA) biosynthesis, but unlike the comparable Bacillus subtilis mutant, was shown not to have an obligate growth requirement for these precursors. The bkd mutant produced only straight-chain fatty acids (SCFAs) with membrane fluidity provided entirely by unsaturated fatty acids (UFAs), the levels of which increased dramatically compared to the wild-type strain. The levels of UFAs increased in both the wild-type and bkd mutant strains as the growth temperature was lowered from 37 degrees C to 24 degrees C, suggesting that a regulatory mechanism exists to alter the proportion of UFAs in response either to a loss of BCFA biosynthesis, or a decreased growth temperature. No evidence of a regulatory mechanism for BCFAs was observed, as the types of these fatty acids, which contribute significantly to membrane fluidity, did not alter when the wild-type S. avermitilis was grown at different temperatures. The principal UFA produced by S. avermitilis was shown to be delta 9-hexadecenoate, the same fatty acid produced by Escherichia coli. This observation, and the inability of S. avermitilis to convert exogenous labeled palmitate to the corresponding UFA, was shown to be consistent with an anaerobic pathway for UFA biosynthesis. Incorporation studies with the S. avermitilis bkd mutant demonstrated that the fatty acid synthase has a remarkably broad substrate specificity and is able to process a wide range of exogenous branched chain carboxylic acids into unusual BCFAs.  相似文献   

19.
Streptococcus mutans GS-5 and IB1600 adapted to growth in acidic environments in continuous culture at slow (generation time = 8.3 h) or fast (generation time = 2.4 h) rates of growth in complex medium with a restricted glucose supply. The extent of adaptation was indicated by changes in minimum pH values attained by harvested cells suspended in dense suspensions with excess glucose and by increased levels of ATPase activity assayed in permeabilized cells. Also, adapted cells better withstood potentially lethal acidification. Cells harvested from cultures growing at pH values close to 5 reduced suspension pH to lower values than cells from cultures maintained at pH 7. Cells from pH 6 cultures were intermediate. The IB1600 strain had a higher level of constitutive acid resistance than the GS-5 strain and also was better able to adapt to growth in acidified media. Both had less adaptive capacity than Enterococcus hirae ATCC 9790. Adaptation occurred rapidly, mainly within a single generation in continuous culture, while deadaptation occurred more slowly over multiple generations. The capacity of S. mutans to adapt to acid conditions is likely to be important in the ecology of dental plaque and also for the cariogenicity of the organism.  相似文献   

20.
Long-chain fatty acid assimilation By rhodopseudomonas sphaeroides   总被引:4,自引:4,他引:0       下载免费PDF全文
Exogenously supplied long-chain fatty acids have been shown to markedly alleviate the inhibition of phototrophic growth of cultures of Rhodopseudomonas sphaeroides caused by the antibiotic cerulenin. Monounsaturated and polyunsaturated C18 fatty acids were most effective in relieving growth inhibition mediated by cerulenin. Medium supplementation with saturated fatty acids (C14 to C18) failed to influence the inhibitory effect of cerulenin. The addition of mixtures of unsaturated and saturated fatty acids to the growth medium did not enhance the growth of cerulenin-inhibited cultures above that obtained with individual unsaturated fatty acids as supplements. Resolution and fatty acid analysis of the extractable lipids of R. sphaeroides revealed that exogenously supplied fatty acids were directly incorporated into cellular phospholipids. Cells treated with cerulenin displayed an enrichment in their percentage of total saturated fatty acids irrespective of the presence of exogenous fatty acids. Cerulenin produced comparable inhibitions of the rates of both fatty acid and phospholipid synthesis and was further found to preferentially inhibit unsaturated fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号