首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To begin to understand pancreas development and the control of endocrine lineage formation in zebrafish, we have examined the expression pattern of several genes shown to act in vertebrate pancreatic development: pdx-1, insulin (W. M. Milewski et al., 1998, Endocrinology 139, 1440-1449), glucagon, somatostatin (F. Argenton et al., 1999, Mech. Dev. 87, 217-221), islet-1 (Korzh et al., 1993, Development 118, 417-425), nkx2.2 (Barth and Wilson, 1995, Development 121, 1755-1768), and pax6.2 (Nornes et al., 1998, Mech. Dev. 77, 185-196). To determine the spatial relationship between the exocrine and the endocrine compartments, we have cloned the zebrafish trypsin gene, a digestive enzyme expressed in differentiated pancreatic exocrine cells. We found expression of all these genes in the developing pancreas throughout organogenesis. Endocrine cells first appear in a scattered fashion in two bilateral rows close to the midline during mid-somitogenesis and converge during late-somitogenesis to form a single islet dorsal to the nascent duodenum. We have examined development of the endocrine lineage in a number of previously described zebrafish mutations. Deletion of chordamesoderm in floating head (Xnot homolog) mutants reduces islet formation to small remnants, but does not delete the pancreas, indicating that notochord is involved in proper pancreas development, but not required for differentiation of pancreatic cell fates. In the absence of knypek gene function, which is involved in convergence movements, the bilateral endocrine primordia do not merge. Presence of trunk paraxial mesoderm also appears to be instrumental for convergence since the bilateral endocrine primordia do not merge in spadetail mutants. We discuss our findings on zebrafish pancreatogenesis in the light of evolution of the pancreas in chordates.  相似文献   

2.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone and somatostatin were utilized to demonstrate the cellular localization of the hormones in pancreatic tissue of fetal guinea pig of advanced gestation by immunofluorescence histochemistry. The topographical distribution of the 4 endocrine cell types was compared with those of the adult pancreas and was found to be significantly different particularly for cells immunostaining for insulin, glucagon and somatostatin. These observations suggest changes in histogenesis of pancreatic endocrine cells during transition from fetal to postnatal and adult life. The presence of the 4 islet hormones in the fetal pancreas of this species implies that they may be important in fetal metabolism and growth.  相似文献   

3.
4.
Glucagon, insulin, somatostatin, and pancreatic polypeptide have been localized in the anolian pancreas using peroxidase-antiperoxidase immunocytochemistry. The most abundant endocrine cell type contains glucagon. Insulin-containing cells are the next most numerous. Somatostatin-immunoreactive cells tend to be localized at the periphery of the islet cords. Pancreatic polypeptide-containing cells are a minor endocrine component scattered throughout the exocrine pancreas and occasionally within the islet areas. No staining was observed after application of antigastrin serum.  相似文献   

5.
6.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Four monoclonal antibodies specific for somatostatin have been produced and characterized. These antibodies were used to assess the anatomical relationship of somatostatin-containing cells in the pancreas and gastrointestinal tract of man, baboon and rat with ten other peptide-containing endocrine cells. The peptides investigated were gastrin, cholecystokinin, motilin, secretin, neurotensin, gastric inhibitory polypeptide, gut-glucagon, pancreatic glucagon, pancreatic polypeptide and insulin. The only regions in which somatostatin cells were seen in close contact with another endocrine cell were in the pancreas and the gastric antrum. In the pancreas somatostatin cells were commonly seen in close contact with insulin, glucagon and pancreatic polypeptide cells and infrequent contact was demonstrable with the gastrin-immunoreactive cells in the antrum of both rat and man. In all other cases no evidence was obtained for a close anatomical relationship between somatostatin cells and the other enteroendocrine cells.  相似文献   

8.
S Alpert  D Hanahan  G Teitelman 《Cell》1988,53(2):295-308
Insulin appears in the developing mouse pancreas at embryonic day 12 (e12). Transgenic mice harboring three distinct hybrid genes utilizing insulin gene regulatory information first express the transgene product two days earlier, at e10, in a few cells of the pancreatic bud. Throughout development and postnatal life, all of the insulin-producing (beta) cells coexpress the hybrid insulin gene. In addition, islet cells containing glucagon, somatostatin, pancreatic polypeptide, and the neuronal enzyme tyrosine hydroxylase coexpress the transgene when they first arise. Similarly, coexpression of these normally distinct islet cell markers occurs during differentiation of the four endocrine cell types. The transgene product also appears transiently during embryogenesis in cells of the neural tube and in neural crest. The results suggest a common precursor for the endocrine cells of the pancreas. Moreover, they imply a relationship between neural and pancreatic endocrine tissue.  相似文献   

9.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone (PP) and somatostatin were used in the immunofluorescence histochemical procedure to study the ontogeny of pancreatic endocrine cells containing the four hormones in the bovine fetus of approximately 100 days gestation to term. Pancreatic sections from the bovine neonate and adult were also examined for the cellular distribution of the four hormones. Immunoreactive cells staining for insulin, glucagon, PP and somatostatin were present in the pancreas of all fetuses studied. Each endocrine cell type displayed a characteristic distribution within the developing pancreas and in the neonate and adult. The presence of the four islet hormones relatively early in bovine fetal life suggests that they may be important in intra- and extra-islet metabolism in the fetus.  相似文献   

10.
Summary Four monoclonal antibodies specific for somatostatin have been produced and characterized. These antibodies were used to assess the anatomical relationship of somatostatin-containing cells in the pancreas and gastrointestinal tract of man, baboon and rat with ten other peptide-containing endocrine cells. The peptides investigated were gastrin, cholecystokinin, motilin, secretin, neurotensin, gastric inhibitory polypeptide, gut-glucagon, pancreatic glucagon, pancreatic polypeptide and insulin.The only regions in which somatostatin cells were seen in close contact with another endocrine cell were in the pancreas and the gastric antrum. In the pancreas somatostatin cells were commonly seen in close contact with insulin, glucagon and pancreatic polypeptide cells and infrequent contact was demonstrable with the gastrin-immunoreactive cells in the antrum of both rat and man. In all other cases no evidence was obtained for a close anatomical relationship between somatostatin cells and the other enteroendocrine cells.  相似文献   

11.
In this Special Issue of the Int. J. Dev. Biol., we summarize our own studies on the development of the mouse endocrine pancreas, with special emphasis on the cell lineage relationships between the four islet cell types. Considerable knowledge concerning the ontogeny of the endocrine pancreas has been gained in recent years, mainly through the use of two complementary genetic approaches in mice: gene inactivation and genetic labelling of precursor cells. However, neither gene inactivation in KO mice nor co-localisation of hormones in single cells during development can be taken as evidence for cell lineage relationships among different cell types. The beta-cell lineage analysis was started by selectively ablating specific islet cell types in transgenic mice. We used the diphtheria toxin A subunit coding region under the control of insulin, glucagon or pancreatic polypeptide (PP) promoters, in order to eliminate insulin-, glucagon- or PP-expressing cells, respectively. Contrary to the common view, we demonstrated that glucagon cells are not precursors of insulin-producing cells. These results were in addition the first evidence of a close ontogenetic relationship between insulin and somatostatin cells. We pursued these analyses using a novel, more subtle approach: progenitor cell labelling through the expression of Cre recombinase in doubly transgenic mice. We were able to unequivocally establish that 1) adult glucagon- and insulin-producing cells derive from precursors which have never transcribed insulin or glucagon, respectively; 2) insulin cell progenitors, but not glucagon cell progenitors transcribe the PP gene and 3) adult glucagon cells derive from progenitors which do express pdx1.  相似文献   

12.
The endocrine pancreas of the Australian brush-tailed possum (Trichosurus vulpecula) was investigated by means of immunocytochemistry using the avidin-biotin-peroxidase technique. This was a light microscopic study using this established technique. Serial paraffin sections were stained individually with primary antibodies for glucagon, insulin, somatostatin, and pancreatic polypeptide (PP), showing the same islet. Cells immunoreactive to glucagon, insulin, somatostatin and PP were found in endocrine islets. PP cells appear to be scattered amidst the exocrine portion also. Insulin immunoreactive cells were located in the central region of islet, glucagon in the periphery, somatostatin in periphery and had elongated processes. PP cells were more sparse and located both in the periphery of islet and amidst the exocrine tissue. These results can then be related to a similar study in the same marsupial, but using the immunofluorescence technique and to studies in other marsupials such as grey kangaroo (Macropus fuliginosus) fat-tailed dunnart (Sminthopsis crasicaudata) and the American opossum (Didelphis virginiana). These investigations are part of a study in Australian mammals.  相似文献   

13.
Most, if not all, endocrine cells seem capable of synthesizing and storing more than one hormone. Such cellular colocalization of hormones can be due either to the presence of two or more specific granules within the cells or to colocalization of the hormones within a single granule. The present study was performed to clarify the subcellular localization of insulin, glucagon, somatostatin, and pancreatic polypeptide within the endocrine cells of the human and porcine pancreas during fetal development, with special reference to possible colocalization of the hormones. The tissue specimens were processed for ultrastructural cytochemistry using Lowicryl as embedding medium. An immunogold labeling technique was used with two parallel, but not interacting, antibody chains. Sections from each specimen were double labeled in different combinations giving a complete covering of the four major islet hormones. During fetal life (50-90 days prenatally in porcine pancreas, 14 weeks gestation in the human pancreas) several hormones were demonstrated, not only in the same endocrine cells, but also in the same secretory granules (polyhormonal granules). Costorage of insulin, glucagon, somatostatin, and pancreatic polypeptide was demonstrated in granules in pancreatic endocrine fetal cells. At an early fetal stage, the endocrine cells contained either dense, round granules or pale, heteromorphous granules. With increasing age and maturation of the endocrine cells, structural differentiation of the secretory granules was found to be associated with a gradual disappearance of the polyhormonal granules. The first genuine monohormonal cell to appear in the porcine fetus was the pancreatic polypeptide cell (at 70 days gestation); it was followed by the somatostatin-producing endocrine cell. Mature insulin- and glucagon-producing cells were only demonstrated after birth. Thus, in the adult pancreatic endocrine cells, each specific endocrine cell type produced only one of the four classical hormones. The present investigation demonstrated that the endocrine cells of the fetal, but not the adult, pancreas are able to synthesize all the major islet hormones, and that these peptides are costored in the same granule. The data obtained support the concept of a common precursor stem cell for pancreatic hormone-producing cells.  相似文献   

14.
Polyhormonal aspect of the endocrine cells of the human fetal pancreas   总被引:7,自引:0,他引:7  
Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th–10th week), (2) the immature polyhormonal islet stage (11th–15th week), (3) the insulin monohormonal core islet stage (16th–29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas. Accepted: 1 June 1999  相似文献   

15.
Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the beta-cell.  相似文献   

16.
FMRF-NH2-like immunoreactivity was localized in the pancreatic polypeptide containing cells of the rat islet. FMRF-NH2 was investigated with regard to its effect on insulin, somatostatin and glucagon secretion from the isolated perfused rat pancreas. FMRF-NH2 (1 microM) significantly inhibited glucose stimulated (300 mg/dl) insulin release (p less than 0.005) and somatostatin release (p less than 0.01) from the isolated perfused pancreas. FMRF-NH2 (1 and 10 microM) was without effect on glucagon secretion, either in low glucose (50 mg/dl), high glucose (300 mg/dl), or during arginine stimulation (5 mM). These findings indicate that these FMRF-NH2 antisera recognize a substance in the pancreatic polypeptide cells of the islet which may be capable of modulating islet beta and D cell activity.  相似文献   

17.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

18.
We have characterized and mapped the zebrafish ptf1a gene, analyzed its embryonic expression, and studied its role in pancreas development. In situ hybridization experiments show that from the 12-somite stage to 48 hpf, ptf1a is dynamically expressed in the spinal cord, hindbrain, cerebellum, retina, and pancreas of zebrafish embryos. Within the endoderm, ptf1a is initially expressed at 32 hpf in the ventral portion of the pdx1 expression domain; ptf1a is expressed in a subset of cells located on the left side of the embryo posteriorly to the liver primordium and anteriorly to the endocrine islet that arises from the posterodorsal pancreatic anlage. Then the ptf1a expression domain buds giving rise to the anteroventral pancreatic anlage that grows posteriorly to eventually engulf the endocrine islet. By 72 hpf, ptf1a continues to be expressed in the exocrine compartment derived from the anteroventral anlage. Morpholino-induced ptf1a loss of function suppresses the expression of the exocrine markers, while the endocrine markers in the islet are unaffected. In mind bomb (mib) mutants, in which delta-mediated notch signalling is defective [Dev. Cell 4 (2003) 67], ptf1a is normally expressed. In addition, the slow-muscle-omitted (smu) mutants that lack expression of endocrine markers because of a defective hedgehog signalling [Curr. Biol. 11(2001) 1358] exhibit normal levels of ptf1a. This indicates that hedgehog signaling plays a different genetic role in the specification of the anteroventral (mostly exocrine) and posterodorsal (endocrine) pancreatic anlagen.  相似文献   

19.
Dihydrosomatostatin (0.001–1.0 ug/ml) inhibited both insulin and glucagon secretion by monolayer cell cultures of newborn rat pancreas. When cultures were incubated with somatostatin and then rinsed, the effect of somatostatin appeared to last longer on the pancreatic alpha cell than on the beta cell as indicated by a more prolonged inhibition of glucagon secretion than of insulin release. Submaximal inhibition of glucose-stimulated insulin release by somatostatin was partially reversed by increasing the concentration of glucose. We conclude that the effect of somatostatin appears to be mediated directly on the pancreatic endocrine cells.  相似文献   

20.
An investigation into the development of the Vervet monkey endocrine pancreas revealed a sequence of occurrence of pancreatic peptides that differed from previous reports in mice, dog and human with PP and somatostatin occurring before glucagon and insulin. All four pancreatic peptides were identified, immunohistochemically, in only one of the pancreatic primordial buds, before fusion of the two buds to form the pancreas. This questions the hypothesis that the heterogeneous endocrine cell distribution seen in the adult pancreas is due to the contribution of only PP cells by the ventral bud and non-PP cells by the dorsal bud. Co-localization of glucagon and PP was observed extensively in the developing pancreas and the predominant expression of one over the other in an apparently organized non-random manner accounted for the glucagon- and PP-rich areas seen in the developing pancreas. A small number of cells immunoreactive to glucagon and PP were also observed in the adult. Reports of plasticity of differentiation of other pancreatic cells led us to investigate regeneration potential of the adult monkey pancreas. Partial obstruction of the Vervet monkey main pancreatic duct, by cellophane wrapping, resulted in duct cell proliferation and differentiation to form new endocrine tissue in a way that mimics normal organogenesis. Focal areas of hepatocytes were found in the regenerated pancreas of one monkey, illustrating further the latent developmental capabilities of adult pancreas cells. These findings could lead to interesting new therapies for pancreas and liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号