首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Robert W. Pearcy 《Oecologia》1976,26(3):245-255
Summary Comparative measurements of CO2 exchange and growth rates were made on Atriplex lentiformis (Torr.) Wats. plants from populations native to coastal as well as desert habitats in southern California. While both had similar CO2 exchange rates at moderate growth temperatures, the desert plants had a substantially greater capacity to acclimate to high growth temperatures indicating that clear ecotypic differences in acclimation capacity are present in this species. This large capacity for photosynthetic acclimation resulted in nearly equal CO2 exchange rates of the desert plants under the different day temperatures characteristic of the desert habitat during the summer and winter months. In contrast, the photosynthetic CO2 exchange rates of the coastal plants was markedly reduced by high growth temperatures. The large acclimation capacity of the desert plants may function to maintain high productivities during both the winter and summer months but would not be required in the coastal plants because of the moderate temperatures throughout the year in their native habitat.Relative growth rates (RGR) of the coastal and desert plants were similar at 23°C day/18°C night and 33°C day/25°C night growth temperatures. At 43°C day/30°C night temperatures, however, the RGR of the desert plants was higher than that of the coastal plants. Thus, the larger acclimation capacity of the desert plants is related to a greater ability to maintain high growth rates over a wide range of temperatures as compared to the coastal plants. Small differences in allocation patterns could account for differences in the comparative photosynthetic responses and growth rates in each temperature regime.Supported by National Science Foundation grant # GB 36311  相似文献   

2.
Two species of Atriplex were grown under low temperature (8 C day/6 C night) and high temperature (28 C day/20 C night) regimes. The photosynthetic capacity of these plants was studied as a function of temperature in a leaf gas exchange cuvette. Both species showed substantial photosynthetic capacity between 4 and 10 C and this was not enhanced by growth at low temperatures but rather, was somewhat greater in plants grown at higher temperature. Photosynthetic capacity of low temperature-grown plants at high temperature was greater in Atriplex confertifolia (Torr. and Frem.) S. Watts., a native of cool deserts, than in Atriplex vesicaria (Hew. ex. Benth.) from warmer desert areas. Leaves of both species were also subjected to 14CO2 pulse-chase and steady-state feeding experiments under controlled temperature conditions. These experiments revealed that the kinetics of carbon assimilation through the intermediates of the C4 pathway is not substantially disrupted at low temperature in either species. There was, however, a substantial interchange of label between aspartate and malate at low temperature which was not evident at high temperature. There was also an increase in the pool sizes of the C4 acids involved in photosynthesis of A. confertifolia. Speculation as to the explanation of these changes and their possible significance in promoting low temperature C4 photosynthesis in these plants is presented.  相似文献   

3.
Larrea divaricata, a desert evergreen shrub, has a remarkable ability to adjust its photosynthetic temperature response characteristics to changing temperature conditions. In its native habitat on the floor of Death Valley, California, plants of this C3 species when provided with adequate water are able to maintain a relatively high and constant photosynthetic activity throughout the year even though the mean daily maximum temperature varies by nearly 30 C from winter to summer. The temperature dependence of light-saturated net photosynthesis varies in concert with these seasonal temperature changes whereas the photosynthetic rate at the respective optimum temperatures shows little change.

Experiments on plants of the same age, grown at day/night temperatures of 20/15, 35/25, and 45/33 C with the same conditions of day length and other environmental factors, showed a similar photosynthetic acclimation response as observed in nature. An analysis was made of a number of factors that potentially can contribute to the observed changes in the temperature dependence of net CO2 uptake at normal CO2 and O2 levels. These included stomatal conductance, respiration, O2 inhibition of photosynthesis, and nonstomatal limitations of CO2 diffusive transport. None of these factors, separately or taken together, can account for the observed acclimation responses. Measurements under high saturating CO2 concentrations provide additional evidence that the observed adaptive responses are primarily the result of changes in intrinsic characteristics of the photosynthetic machinery at the cellular or subcellular levels. Two apparently separate effects of the growth temperature regime can be distinguished: one involves an increased capacity for photosynthesis at low, rate-limiting temperatures with decreased growth temperature, and the other an increased thermal stability of key components of the photosynthetic apparatus with increased growth temperature.

  相似文献   

4.
The relationships between photosynthesis, flowering, and growth temperatures were examined experimentally in four populations of the C4 grass genus Bouteloua. Field-collected plants were grown under two temperature regimes, cool (20 C day/6 C night) and warm (30/16), representative of the extreme populations. Populations collected from the warm climates had significantly lower photosynthetic capacity when grown in the cool chamber relative to the warm chamber, while photosynthetic capacity in the cool climate populations did not differ between the growth conditions. Additionally, exposure to a 2-day cold temperature treatment (10/-2), representative of late-season frosts in high altitude sites, resulted in further reductions in photosynthesis in the warm climate plants, but not in the cool climate plants. This effect was greater for plants grown in the cool growth chamber. Flowering was reduced by 70% in the warm climate plants grown in the cool chamber, and was correlated with photosynthetic inhibition following the short-term cold temperature treatment. These results indicate that genetic differentiation for photosynthetic temperature sensitivity has occurred in the cool climate populations, and that long-term exposure to cool temperatures coupled with short-term relatively extreme low temperatures results in greater photosynthetic inhibition in nontolerant populations.  相似文献   

5.
Chickpeas were grown with or without nitrate nitrogen feeding, or nodulated with Rhizobium leguminosarum. High [40°C day, 25°C night (HT)] and moderate [25°C day, 177°C night (LT)] temperature regimes were employed during growth. Growth rates, photosynthetic capacity and enzymes of carbon and nitrogen metabolism were monitored to assess the acclimatory capacity of the chickpea. Initial growth rates were stimulated by high temperatures, particularly in nitrate-fed and nodulated plants. Older HT plants had fewer laterals, smaller leaves, and fewer flowers were produced than in LT plants. There was some indication of an acclimation of photosynthesis to high temperatures and this was independent of nitrogen supply. Rubisco activity was increased by high growth temperatures. However, HT plants also had higher transpiration rates and lower water use efficiency than LT plants both in respective growth conditions and when compared in a common condition. High temperatures reduced shoot nitrate reductase activity but had little effect on root activity, which was the same if not greater than activity in LT roots. The amino acid, asparagine, was found at high concentrations in all treatments. Concentrations were maintained throughout growth in HT plants but declined with age in LT plants.  相似文献   

6.
Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod.  相似文献   

7.
Net photosynthetic rates and mesophyll conductances were measured under standardized conditions for leaves of two C3 and one C4 annual species grown at temperatures of 20 to 32°C. Plants were grown with varying day and night temperatures, and also at constant temperatures equal to all the day and night temperatures used. Plants were grown with 8, 12, and 16 hours of light per day. This design allowed determination of whether photosynthetic characteristics were best correlated with day, night, mean, or time-weighted mean temperatures, The results showed that for Glycine max (L.) Merr. (C3) night temperature was most important in determining photosynthetic characteristics, while in Helianthus annuus L. (C3) and Amaranthus hypochondriacus L. (C4) the time-weighted mean temperature was most important. The results for all species were consistent with the hypothesis that development of photosynthetic characteristics is related to a balance between the rate of leaf expansion and the rate of photosynthesis under the growth conditions.  相似文献   

8.
Four populations of Cannabis sativa L. grown from seeds collected in Panama, Jamaica, Nepal, and east central Illinois were grown under controlled conditions in growth chambers. One set was grown under warm conditions (32° day and 23° night) and the other set was grown under lower temperatures (23° day and 16° night). CO2 exchange and transpiration were examined under various temperatures and light intensities. Observations on growth, and analyses for chlorophyll and Δ1THC (tetrahydrocannabinol) content were made. Under warm growth conditions, the central Illinois population had the highest photosynthetic rate at all temperatures investigated. The Nepal population had intermediate rates, while the Jamaica and the Panama populations had the lowest rate. The Jamaica and Panama populations had insignificant changes in photosynthetic response to changes in temperatures between 15° and 30°. Under cool growing conditions the central Illinois population had the highest rate of photosynthesis with a definite peak at 25°. Nepal plants had intermediate rates of photosynthesis, while the Panama and Jamaica populations had the lowest rate. Differences in chlorophyll and drug content were also significant between these populations. From these data it is suggested that the four populations can be grouped into different ecotypes genetically adapted to their respective environments.  相似文献   

9.
In vivo room temperature chlorophyll a fluorescence coupled with CO2 and O2 exchange was measured to determine photosynthetic limitation(s) for spring and winter wheat (Triticum aestivum L.) grown at cold-hardening temperatures (5°C/5°C, day/night). Plants of comparable physiological stage, but grown at nonhardening temperatures (20°C/16°C, day/night) were used in comparison. Winter wheat cultivars grown at 5°C had light-saturated rates of CO2 exchange and apparent photon yields for CO2 exchange and O2 evolution that were equal to or greater than those of winter cultivars grown at 20°C. In contrast, spring wheat cultivars grown at 5°C showed 35% lower apparent photon yields for CO2 exchange and 25% lower light-saturated rates of CO2 exchange compared to 20°C grown controls. The lower CO2 exchange capacity is not associated with a lower efficiency of photosystem II activity measured as either the apparent photon yield for O2 evolution, the ratio of variable to maximal fluorescence, or the level of reduced primary quinone electron acceptor maintained at steady-state photosynthesis, and is most likely associated with carbon metabolism. The lower CO2 exchange capacity of the spring cultivars developed following long-term exposure to low temperature and did not occur following over-night exposure of nonhardened plants to 5°C.  相似文献   

10.
Summary The gas exchange characteristics of two C3 desert annuals with contrasting phenologies, Geraea canescens T. & G. (winter-active) and Dicoria canescens T. & G. (summer-active), both Asteraceae, were determined for plants grown under a moderate (25°/15° C, day/night temperature) and a high (40°/27° C) growth temperature regime. Both species had high photosynthetic capacities; maximum net photosynthetic rates were 38 and 48 mol CO2 m-2 s-1 for Geraea and Dicoria, respectively, and were not influenced by growth temperature regime. However, the temperature optima of net photosynthesis shifted from 26° C for Geraea and from 28° C for Dicoria when grown under the moderate temperature regime to 31° C for both species when grown under the high temperature regime. Although the shifts in temperature optima were smaller than those observed for many desert perennials, both species showed substantial increases in photosynthetic rates at high temperatures when grown at 40°/27° C. In general, the gas exchange characteristics of Geraea and Dicoria were very similar to each other and to those reported for other C3 desert annuals. Geraea and Dicoria experienced different seasonal patterns of change in several environmental variables. For Geraea, maximum daily air temperature (T a) increased from 24° to 41° C over its growing season while Dicoria experienced maximum T a at midseason (45° C). At points during their respective growing seasons when midday T a ranged between 35° and 40° C, leaf temperatures (T 1) of both species were below T a and, therefore, were closer to the photosynthetic temperature optima measured in the laboratory. Leaf conductances to water vapor (g 1) and water potentials () were high at these times, but later in their growing seasons Dicoria maintained high g 1 and while Geraea showed large decreases in these quantities. The ability of Dicoria to successfully growth through the hot, dry summers of the California deserts may be related to its ability to acquire the available water in locally mesic habitats.  相似文献   

11.
Temperature dependence of photosynthesis in cotton   总被引:7,自引:3,他引:4       下载免费PDF全文
Cotton plants (Gossypium hirsutum L., var. Deltapine Smooth Leaf) were grown under controlled environmental conditions over a range of day/night temperatures from 20/15 to 40/35 C. Their photosynthetic characteristics were then measured over a comparable temperature range. Net photosynthesis tended stongly to be greatest, and intracellular resistance to CO2 transport to be lowest, when the measurement temperature corresponded to the daytime growth temperature, suggesting pronounced acclimation of the plants to the growth temperature. The preferred growth temperature was close to the 25/20 C regime, since net photosynthesis of these plants, regardless of measurement temperature, was higher and intracellular resistance lower, than in plants from any other regime.  相似文献   

12.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

13.
Boese SR  Huner NP 《Plant physiology》1992,99(3):1141-1145
Room temperature chlorophyll a fluorescence was used to determine the effects of developmental history, developmental stage, and leaf age on susceptibility of spinach to in vivo low temperature (5°C) induced photoinhibition. Spinach (Spinacia oleracea cv Savoy) leaves expanded at cold hardening temperatures (5°C day/night), an irradiance of 250 micromoles per square meter per second of photosynthetic proton flux density, and a photoperiod of 16 hours were less sensitive than leaves expanded at nonhardening temperatures (16 or 25°C day/night) and the same irradiance and photoperiod. This differential sensitivity to low-temperature photoinhibition was observed at high (1200) but not lower (500 or 800 micromoles per square meter per second) irradiance treatment. In spite of a differential sensitivity to photoinhibition, both cold-hardened and nonhardened spinach exhibited similar recovery kinetics at either 20 or 5°C. Shifting plants grown at 16°C (day/night) to 5°C (day/night) for 12 days after full leaf expansion did not alter the sensitivity to photoinhibition at 5°C. Conversely, shifting plants grown at 5°C (day/night) to 16°C (day/night) for 12 days produced a sensitivity to photoinhibition at 5°C similar to control plants grown at 16°C. Thus, any resistance to low-temperature photoinhibition acquired during growth at 5°C was lost in 12 days at 16°C. We conclude that leaf developmental history, developmental stage, and leaf age contribute significantly to the in vivo photoinhibitory response of spinach. Thus, these characteristics must be defined clearly in studies of plant susceptibility to photoinhibition.  相似文献   

14.
  • We analysed whether Phacelia secunda populations from different elevations exhibit intrinsic traits associated with diffusive and biochemical components of photosynthesis, and if they differ in acclimation of photosynthesis to warmer temperatures. We hypothesized that P. secunda will have similar photosynthetic performance regardless of altitudinal provenance and that plants from high elevations will have a lower photosynthetic acclimation capacity to higher temperature than plants from low elevations.
  • Plants from 1600, 2800 and 3600 m a.s.l. in the central Chilean Andes were collected and grown under two temperature regimes (20/16 °C and 30/26 °C day/night). The following photosynthetic traits were measured in each plant for the two temperature regimes: AN, gs, gm, Jmax, Vcmax, Rubisco carboxylation kcatc.
  • Under a common growth environment, plants from the highest elevation had slightly lower CO2 assimilation rates compared to lower elevation plants. While diffusive components of photosynthesis increased with elevation provenance, the biochemical component decreased, suggesting compensation that explains the similar rates of photosynthesis among elevation provenances. Plants from high elevations had lower photosynthetic acclimation to warmer temperatures compared to plants from lower elevations, and these responses were related to elevational changes in diffusional and biochemical components of photosynthesis.
  • Plants of P. secunda from different elevations maintain photosynthetic traits when grown in a common environment, suggesting low plasticity to respond to future climate changes. The fact that high elevation plants had lower photosynthetic acclimation to warmer temperature suggests higher susceptibility to increases in temperature associated with global warming.
  相似文献   

15.
C4 plants are rare in the cool climates characteristic of high latitudes and altitudes, perhaps because of an enhanced susceptibility to photo‐inhibition at low temperatures relative to C3 species. In the present study we tested the hypothesis that low‐temperature photo‐inhibition is more detrimental to carbon gain in the C4 grass Muhlenbergia glomerata than the C3 species Calamogrostis Canadensis. These grasses occur together in boreal fens in northern Canada. Plants were grown under cool (14/10 °C day/night) and warm (26/22 °C) temperatures before measurement of the light responses of photosynthesis and chlorophyll fluorescence at different temperatures. Cool growth temperatures led to reduced rates of photosynthesis in M. glomerata at all measurement temperatures, but had a smaller effect on the C3 species. In both species the amount of xanthophyll cycle pigments increased when plants were grown at 14/10 °C, and in M. glomerata the xanthophyll epoxidation state was greatly reduced. The detrimental effect of low growth temperature on photosynthesis in M. glomerata was almost completely reversed by a 24‐h exposure to the warm‐temperature regime. These data indicate that reversible dynamic photo‐inhibition is a strategy by which C4 species may tolerate cool climates and overcome the Rubisco limitation that is prevalent at low temperatures in C4 plants.  相似文献   

16.
Pearcy RW 《Plant physiology》1978,61(4):484-486
Plants of Atriplex lentiformis had more saturated leaf lipids when grown at 43 C day/30 C night as compared to 23/18 C temperatures. In monogalactosyl diglyceride, the major change was the presence of hexadecatrienoic acid (16:3) at low but not high growth temperatures. In other lipids investigated, the major change was a decrease in linolenic acid (18:3) and increases in the more saturated fatty acids at high growth temperatures. Growth temperatures had little effect on the relative proportions of the galacto- and sulfolipids in the leaf. The increased lipid saturation is correlated with the greater thermostability of the photosynthetic apparatus at high growth temperatures in A. lentiformis but any cause and effect relationship is uncertain.  相似文献   

17.
Leaf expansion in Sorghum bicolor (Moench) was severely retarded by low night temperatures (5 C). However, this was not reflected in the early measurements of relative growth rate, indicating that the response was not associated with a deterioration of the photosynthetic system. For plants grown at 30/25 C (day/night) and subsequently held at an ambient temperature of 30 C, phloem transport, as measured either by the movement of 14C-photosynthate through a zone of controlled temperature or by accumulation of dry matter distal to this zone, was inhibited by temperatures below 10 C. The speed of movement of 32P through the temperature controlled zone was more sensitive to temperature with reductions apparent below 20 C. Although there was some recovery in the movement of 32P following 3 days equilibration at low temperature (1 to 10 C), the new values (approximately 100 centimeters per hour) were still only about one-third of those obtained in the high temperature controls. For plants held at an ambient temperature of 21 C, which is well below the optimum for growth, translocation was only inhibited by temperatures below 5 C. Although low temperature may reduce the carrying capacity of the phloem of S. bicolor, this is unlikely to be an important factor in regulating the growth of the plants at low temperatures.  相似文献   

18.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

19.
In well-watered plants of Welwitschia mirabilis, grown in the glass-house under high irradiance conditions, net CO2 assimilation was almost exclusively observed during the daytime. The plants exhibited a very low potential for Crassulacean acid metabolism, which usually resulted in reduced rates of net CO2 loss for several hours during the night. In leaves exposed to the diurnal changes in temperature and humidity typical of the natural habitats, CO2 assimilation rates in the light were markedly depressed under conditions resembling those occurring during midday, when leaf temperatures and the leaf-air vapor pressure differences were high (36°C and 50 millibars bar−1, respectively). Studies on the relationship between CO2 assimilation rate and intercellular CO2 partial pressure at various temperatures and humidities showed that this decrease in CO2 assimilation was largely due to stomatal closure. The increase in the limitation of photosynthesis by CO2 diffusion, which is associated with the strong decline in stomatal conductance in Welwitschia exposed to midday conditions, may significantly contribute to the higher 13C content of Welwitschia compared to the majority of C3 species.  相似文献   

20.
Effects of temperature on leaf hydraulic architecture of tobacco plants   总被引:1,自引:0,他引:1  

Main Conclusion

Modifications in leaf anatomy of tobacco plants induced greater leaf water transport capacity, meeting greater transpirational demands and acclimating to warmer temperatures with a higher vapor pressure deficit. Temperature is one of the most important environmental factors affecting photosynthesis and growth of plants. However, it is not clear how it may alter leaf hydraulic architecture. We grew plants of tobacco (Nicotiana tabacum) ‘k326’ in separate glasshouse rooms set to different day/night temperature conditions: low (LT 24/18 °C), medium (MT 28/22 °C), or high (HT 32/26 °C). After 40 days of such treatment, their leaf anatomies, leaf hydraulics, photosynthetic rates, and instantaneous water-use efficiency (WUEi) were measured. Compared with those under LT, plants exposed to HT or MT conditions had significantly higher values for minor vein density (MVD), stomatal density (SD), leaf area, leaf hydraulic conductance (K leaf), and light-saturated photosynthetic rate (A sat), but lower values for leaf water potential (ψ l) and WUEi. However, those parameters did not differ significantly between HT and MT conditions. Correlation analyses demonstrated that SD and K leaf increased in parallel with MVD. Moreover, greater SD and K leaf were partially associated with accelerated stomatal conductance. And then stomatal conductance was positively correlated with A sat. Therefore, under well-watered, fertilized conditions, when relative humidity was optimal, changes in leaf anatomy seemed to facilitate the hydraulic acclimation to higher temperatures, meeting greater transpirational demands and contributing to the maintenance of great photosynthetic rates. Because transpiration rate increased more with temperature than photosynthetic rate, WUEi reduced under warmer temperatures. Our results indicate that the modifications of leaf hydraulic architecture are important anatomical and physiological strategies for tobacco plants acclimating to warmer temperatures under a higher vapor pressure deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号