首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   

2.
3.
The number of border (scaled off) cells (BCs) was determined in the root apex of 1-day-old wheat (Triticum aestivum L.) seedlings. Microscopic examination of cytological root preparations showed that in 24 h the number of BCs in the gel sheath of the root apex was 30–40 per root. When the gel sheath was preparatively removed, their number per root increased twice. It is assumed that the subpopulation of BCs directly associated with the root apex differs from the subpopulation of BCs freely accommodated in the gel sheath. The number of BCs was the same in the roots with low and high natural growth rates. NaF (1–20 mM) suppressed growth of wheat seedling roots; the viscosity of the gel sheath increased (by 3–5 times), and the number of BC rose with the most pronounced increment in the size of the BC subpopulation directly associated with the root apex. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 530–538.  相似文献   

4.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

5.
6.
Abstract. The effects of a change in the distribution of nitrate within the root zone on N uptake and growth were studied using young lettuce plants after reducing the proportion of their root systems supplied with nitrate from 100 to ca 10% in split-root experiments in the glasshouse. The main effects of the localized nitrate supply were concentrated in a 2-week period immediately after the treatment was imposed, when a temporary reduction in nitrate uptake caused the gradual development of N deficiency and a decline in plant growth rate. The plants adapted to the change in nitrate distribution, initially by increasing unit absorption rates (uptake rates per unit weight of root) and more gradually by increasing production of new roots in the high-nitrate zone. As a result, relative N uptake rates and relative growth rates were restored to the same levels as for control plants (given a spatially uniform N supply throughout) after ca 12d, even though only ca 12–15% of their roots were exposed to nitrate at this time. Thereafter, the plants continued to adapt by concentrating new root growth in the nitrate-containing zone, ultimately allowing unit absorption rates to return to normal. There was no evidence of any significant N deficiency in the plants after the initial adaptive response was complete, even though the total-N concentrations of the plants given the localized supply were consistently less than those given the uniform N treatment, and nitrate concentrations in the petiole sap were generally lower in leaves on one side of the plant (because of limited lateral movement of nitrate between xylem vessels during its transport to the shoot). The delay in the initiation of an adaptive response caused a significant check in growth, and the resulting relative weight differences were maintained throughout the subsequent life of the plant. Plants in all treatments matured on the same date, so yields for those grown with the localized supply were less than those of the control, and could not be recovered by delaying final harvest without unacceptable loss of quality. The pattern of the changes in N uptake and plant growth, and the effect on final yield, were similar to those exhibited by young lettuce plants subjected to a temporary interruption in nitrate supply, suggesting that the reduction in final yield for plants grown with the localized supply was largely the effect of the check in growth which occurred whilst the Plants were adapting to the change in nitrate distribution during the early part of the experiment. This implies that the rate of dry matter production of young lettuce plants can be altered by N treatment without affecting their rate of physiological development.  相似文献   

7.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   

8.
Stitt  Mark  Scheible  Wolf-Rüdiger 《Plant and Soil》1998,201(2):259-263
Most previous analyses of shoot-root allocation have investigated correlations between changes in putative signals and shoot-root allocation. It is argued that studies of shoot-root allocation need to be extended to include investigations of mutants with specific lesions in nutrient metabolism, to identify the compounds that are sensed as indicators for the plant nutrient status and act as the starting point for specific transduction pathways. The mechanisms of nutrient sensing can then be investigated using molecular and genetic strategies analogous to those that have been successfully used to investigate other signal transduction events. Investigations of shoot-root allocation should also pay more attention to the way in which root architecture is modified in response to nutrient supply, and need to be designed and interpreted in the light of molecular and genetic analyses of root development.  相似文献   

9.
Leaf cell protoplasts were isolated from wheat seedlings ( Triticum aestivum L. cv. Urquie) after orthophosphate (Pi) treatment of the plant to determine the capacity for intracellular phosphate accumulation. Seedlings were treated with Pi concentrations near the phytotoxic level to maximize the Pi concentration in the leaf prior to protoplast isolation 1 day later. Both foliar and root treatment of seedlings with Pi increased the phosphate content of leaf protoplasts by approximately 20 μmol (mg chlorophyll)−1 over Pi levels in untreated controls. Phosphate-loaded protoplasts from treated seedlings had similar photosynthetic rates and starch content but 50% more soluble reducing sugar than protoplasts from untreated seedlings. Protoplast dark respiration decreased after treatments which increased protoplast potassium content. The results suggest that similar amounts of Pi can be accumulated by leaf cells of wheat after foliar or root application of Pi to the seedling without hindering Pi-sensitive processes such as photosynthesis and starch synthesis.  相似文献   

10.
The long-term effect of tentoxin on K+;, Ca2+ and total phosphorus (P) concentrations in the roots and shoots of 7- and 14-day-old seedlings of winter wheat ( Triticum aestivum L. cv. Martonvásári-8) was studied. Growth (dry weight) and shoot to root ratios (dry weight and mineral concentrations) were also estimated. One p M tentoxin increased the shoot to root ratio for dry weight after a 14-day period of application. The concentration of Ca2+ slightly increased in the shoot. In roots, tentoxin caused a 30% higher accumulation of Ca2+ after 7 days, which did not change with treatment during the following 7 days. The accumulation of Ca2+ was enhanced by increasing concentrations of tentoxin. K+ and total P levels increased in roots but decreased in shoots after 7 days. However, they were redistributed between root and shoot during days 8–14 of tentoxin treatment. The effect of tentoxin is explained as a stimulation of ion transport mainly into the vacuoles of the immature metaxylem elements. It is suggested that tentoxin and other microbial products effective at very low concentrations may have a general significance in promoting plant infection or symbiosis via the modification of physiological or biochemical processes.  相似文献   

11.
Spring wheat [ Triticum aestivum (L). cv. Yecora Rojo] was grown from December 1992 to May 1993 under two atmospheric CO2 concentrations, 550 μmol mol–1 for high-CO2 plots, and 370 μmol mol–1 for control plots, using a Free-Air CO2 Enrichment (FACE) apparatus. In addition to the two levels of atmospheric CO2, there were ample and limiting levels of water supply through a subsurface trip irrigation system in a strip, split-plot design. In order to examine the temporal and spatial root distribution, root cores were extracted at six growth stages during the season at in-row and inter-row positions using a soil core device (86 mm ID, 1.0 m length). Such information would help determine whether and to what extent root morphology is changed by alteration of two important factors, atmospheric CO2 and soil water, in this agricultural ecosystem. Wheat root growth increased under elevated CO2 conditions during all observed developmental stages. A maximum of 37% increase in total root dry mass in the FACE vs. Control plots was observed during the period of stem elongation. Greater root growth rates were calculated due to CO2 enhancement until anthesis. During the early vegetative growth, root dry mass of the inter-row space was significantly higher for FACE than for Control treatments suggesting that elevated CO2 promoted the production of first-order lateral roots per main axis. Then, during the reproductive period of growth, more branching of lateral roots in the FACE treatment occurred due to water stress. Significant higher root dry mass was measured in the inter-row space of the FACE plots where soil water supply was limiting. These sequential responses in root growth and morphology to elevated CO2 and reduced soil water supports the hypothesis that plants grown in a high-CO2 environment may better compensate soil-water-stress conditions.  相似文献   

12.
No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots ( Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only -lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more that 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 109 to 106 colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.  相似文献   

13.
Aluminum (Al) inhibits root growth in acidic soil, but the site of action of Al remains unclear. We investigated whether the rate of Al accumulation correlates to Al-indeced rapid root growth inhibition in rice seedlings (Oryza sativa L. cv. Youngnam). Growth of roots was significantly inhibited by 100 μM AICI3, as early as 1 h after the treatment. The inhibition of root growth was strongly dependent on Al concentration (l50 = 20 (μM) and Al-exposure time (l50 = 23 min at 25 μM Al) in a solution of 10 mM KCI and 1 mM CaCl2 buffered by 10 mM Mes/KOH (pH 4.5). Using ICPES, massive uptake of Al by roots was observed even at 15 min treatment of 25 μM Al. The kinetics of Al uptake by the roots closely corresponded to the inhibitory effects of Al on root growth. When the roots of seedlings were exposed to 50 (μM Al for 1 h, then sectioned and stained with hematoxylin, all cell types of the roots showed the presence of Al in the cytoplasm. These results indicate that Al was rapidly taken up into the root cells and thereby reduced root growth.  相似文献   

14.
The recently isolated root‐hairless mutant of barley (Hordeum vulgare L), bald root barley, brb offers a unique possibility to quantify the importance of root hairs in phosphorus (P) uptake from soil. In the present study the ability of brb and the wild‐type, barley genotype Pallas producing normal root hairs to deplete P in the rhizosphere soil was investigated and the theory of diffusion and mass flow applied to compare the predicted and measured depletion profiles of diffusible P. Pallas depleted twice as much P from the rhizosphere soil as brb. The P depletion profile of Pallas uniformly extended to 0.8 mm from the root surface, which was equal to the root hair length (RHL). The model based on the theory of diffusion and mass flow explained the observed P‐depletion profile of brb, and the P depletion outside the root‐hair zone of Pallas, suggesting that the model is valid only for P movement in rhizosphere soil outside the root‐hair zone. In low‐P soil (P in soil solution 3 µm ) brb did not survive after 30 d, whereas Pallas continued to grow, confirming the importance of root hairs in plant growth in a P‐limiting environment. In high‐P soil (P in soil solution 10 µm ) both brb and Pallas maintained their growth, and they were able to produce seeds. At the high‐P concentration, RHL of the Pallas was reduced from 0.80 ± 0.2 to 0.68 ± 0.14 mm. In low‐P soil, P‐uptake rate into the roots of Pallas was 4.0 × 10?7 g mm?1 d?1 and that of brb was 1.9 × 10?7 g mm?1 d?1, which agreed well with the double amount of P depleted from the rhizosphere soil of Pallas in comparison with that of brb. In high‐P soil, the P uptake rates into the roots of brb and Pallas were 3.3 and 5.5 × 10?7 g mm?1 d?1, respectively. The results unequivocally confirmed that in a low‐P environment, root hairs are of immense importance in P acquisition and plants survival, but under high‐P conditions they may be dispensable. The characterization of phenotypes brb and Pallas and the ability to reproduce seeds offers a unique possibility of molecular mapping of QTLs and candidate genes conferring root‐hair formation and growth of barley.  相似文献   

15.
Silicon and copper interaction in the growth of spring wheat seedlings   总被引:1,自引:0,他引:1  
Shoot and root fresh and dry matters and their Cu content were determined in 7-d-old seedlings of Triticum aestivum L. cv. Alkora treated with Cu (10,20, 40 μg cm-3) and Si (500 μg cm-3). Si significantly reduced the toxic effect of Cu on fresh and dry matter production of wheat seedlings. Moreover, plants treated with Cu and Si absorbed less Cu from the solution and had higher water content in shoots and roots than that treated with Cu only. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
van der Werf, A., Kooijman, A., Welschen, R. and Lambers, H. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. - Physiol. Plant. 72: 483–491. The respiratory characteristics of the roots of Carex diandra Schrank and Carex acutiformis Ehrh. were investigated. The aims were, firstly to determine the respiratory energy costs for the maintenance of root biomass, for root growth and for ion uptake, and secondly to explain the higher rate of root respiration and ATP production in C. diandra. The three respiratory energy components were derived from a multiple regression analysis, using the relative growth rate and the net rate of nitrate uptake as independent variables and the rate of ATP production as a dependent variable. Although the rate of root respiration and ATP production was significantly higher in C. diandra than in C. acutiformis, the two species showed no significant difference in their rate of ATP production for the maintenance of biomass, in the respiratory energy coefficient for growth (the amount of ATP production per unit of biomass produced) and the respiratory energy coefficient for ion uptake (amount of ATP production per unit of ions absorbed). It is concluded that the higher rate of root respiration of C. diandra is caused by a higher rate of nitrate uptake. At relatively high rates of growth and nitrate uptake, the contribution of the rate of ATP production for ion uptake to the total rate of ATP production amounted to 38 and 25% for C. diandra and C. acutiformis, respectively. At this growth rate, the respiratory energy production for growth contributed 37 and 50%, respectively, to the total rate of ATP production. The relative contribution of the rate of ATP production for the maintenance of biomass increased from 25 to 70% with increasing plant age for both species. The results suggest that ion uptake is one of the major sinks for respiratory energy in roots. These experimentally derived values for the rate of ATP production for the maintenance of biomass, the respiratory energy coefficient for growth and the respiratory energy coefficient for ion uptake are discussed in relation to other experimentally and theoretically derived values.  相似文献   

17.
The dynamics of root growth, proliferation of initial cells of the root cap, rhizodermis, and central metaxylem, as well as structural changes in the cells induced by a 72-h exposure to a high (0.1 mM) concentration of NiSO4 were studied in 3-day-old wheat (Triticum aestivum L.) seedlings. In the roots of control plants, we observed a 12-h rhythm of changes in the length of the cells that completed elongating. Upon the treatment with nickel, this effect was negated, and a considerable reduction in the root length increment was observed in 12 h. In 24 h, root growth essentially ceased. Cell elongation was suppressed acropetally, and the cells, whose elongation was over, became shorter. In the meristem and apical part of the elongation zone, slow cell growth continued during the second and even third days. Autoradiography showed that the earliest effect of nickel on the processes of root morphogenesis observed in 6 h was a suppression of cell transition to DNA synthesis. The cells, where DNA synthesis has already started or which were in other stages of the cycle, continued to pass slowly through the cycle and completed it. Sister cells formed as a result of division subsequently left the cycle in the phase G1 and transited to dormancy. It was found that the main mechanism of cell proliferation cessation was the suppression of cell transition to DNA synthesis. In the cells elongating when exposed to nickel, tissue-specific changes in the nucleus structure were observed (chromatolysis in the rhizodermis and cortex, pycnosis in the endodermis, a disturbance of the nucleus structure in the central metaxylem). These disorders were only observed after cessation of elongation. Root incubation in 0.1 mM nickel solution did not affect the onset of cell differentiation in the xylem and metaphloem and shifted its beginning to the root tip. However, in 24 h the initiation and growth of root hairs were suppressed. It was concluded that tissue-specific nickel-induced changes in the nucleus structure in the elongating cells do not cause the cessation of root growth, although point to nickel toxic effect on the cells in the course of elongation.  相似文献   

18.
Klotz, M. G. and Erdei, L. 1988. Effect of tentoxin on K+ transport in winter wheat seedlings of different K+-status. The influence of the phytoeffective mycotoxin, tentoxin, [cyclo-(L-leucyl-N-methyltrans-dehydronhenyl-alanyl-glycyl-N-methyl-L-alanyl)] (in K+ uptake and on translocation of K+ from roots to shoot was studied in 14-day-old winter wheat plants (Triticum aestivum L. cv. Martonvásári-8) grown at different levels of K+ supply. For comparison, the effects of 2,4-dinilrophcnol and valinomycin were also investigated. In I-h experiments I pM tentoxin reduced K+ influx in the routs over the external K+ concentration range 0.1 to 1 mM (low-K+ plants), whereas stimulation was observed al lower and higher K+ concentrations. On the other hand, in plants grown at 0.3 mM K+, tentoxin stimulated the translocation of K+ from roots to shoots in 5-h experiments. Valinomycin affected K+ transport only al high K+-status (slight stimulation). In low-K+ plants 2,4-dinitrophenol (DNP) caused drastic inhibition of K+ uptake, but in high-K+ plants uptake was only slightly inhibited and translocation slightly stimulated, It is concluded that the opposite effects of tentoxin on K+ uptake and translocation agree1 with the directions of the H+-ATPases pumping H+ towards the apoplast and located at the cortex plasmalemma and the xylem parenchyma plasma-membrane, respectively. These effects should probably be attributed to the interaction between tentoxin and the K+-carrier protein rather than to a direct influence of tentoxin on H+-ATPase.  相似文献   

19.
The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m−2 in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P<0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length. Section Editor: R. W. Bell  相似文献   

20.
Gibberellic acid reduced the uptake of nitrogen and phosphorus relative to the cations, a common reponse in the three pea cultivars studied. In addition, in the cv. Progress, it increased the uptake of calcium relative to magnesium and potassium. No effect in the proportion in which cations are absorbed was noticeable in the other two varieties. Ion uptake is modified by gibberellic acid through its influence on the sink strength of the shoot, the size and geometry of the root system, and the selectivity in uptake. The overall effect may result in a stimulation or an inhibition, depending on the ion considered and the pea cultivar.Abbreviation GA3 gibberellic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号