首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
TLR ligands and other allergen-nonspecific immunostimulatory molecules are ubiquitous in ambient air and have profound modulatory activities in animal models of allergic asthma. However, several of these molecules have been shown to promote exaggerated Th2-biased airway hypersensitivity responses (AHRs), whereas others attenuate the asthmatic phenotype. Therefore, it has proven difficult to extrapolate experimental results with purified molecules toward a more general understanding of the allergen-nonspecific immunomodulatory influence of living environments on the natural history of allergic asthma. These investigations determined how regular and intermittent airway exposures to an unpurified, but sterile house dust extract standard (HDEst) affected the OVA-specific AHR and immune status of previously Th2-sensitized mice. Low-dose daily and high-dose intermittent HDEst exposures modulated ongoing AHRs considerably, reducing eosinophil recruitment and methacholine responsiveness, while increasing neutrophilic inflammation. However, only daily airway delivery of low-dose HDEst attenuated OVA-specific Th2 cytokine production and Th2-biased AHRs to allergen challenge 1 mo later. Finally, whereas LPS mimicked many of the immunomodulatory characteristics of HDEst in this murine asthma model, daily airway HDEst delivery was highly effective in attenuating the AHR of OVA/alum-sensitized TLR4-deficient mice. Taken together, these investigations provide direct evidence that living environments contain allergen-nonspecific immunostimulatory molecules that influence the airway hypersensitivity status of allergen-sensitized mice by TLR4-dependent and independent mechanisms.  相似文献   

2.
In the mucosal immune system, resident dendritic cells are specialized for priming Th2-polarized immunity, whereas the Ag-presenting activity of macrophages has been linked with the development of Th1 phenotype. As an immune switch toward Th1 can protect against Th2-mediated allergic response, this study investigated the capacity of lung macrophages to stimulate Th1 responses during the secondary exposure to inhaled allergen, thereby suppressing Th2-mediated allergic airway inflammation in a murine model of allergic asthma. Following airway macrophage depletion in OVA-sensitized mice, lung T cells defaulted to a phenotype that produced less Th1 (IFN-gamma) and more Th2 (IL-4 and IL-5) cytokines, leading to more severe airway hyperreactivity and inflammation after intranasal Ag challenge. After OVA pulsing and adoptive transfer, lung macrophages selectively promoted a Th1 response in Ag-sensitized recipients and did not induce pulmonary eosinophilia. By contrast, OVA pulsing and adoptive transfer of a lung cell preparation, consisting of dendritic cells, B cells, and macrophages, promoted a Th2 response with an associated inflammatory response that was suppressed when macrophages were present and pretreated with IFN-gamma, but exacerbated when macrophages were depleted before IFN-gamma treatment. In addition, Th1-promoting activity of lung macrophages was not related to the autocrine production of IL-12p40. These results suggest that the Th1-promoting APC activity may be an inherent property of the lung macrophage population, and may play an important role, upon stimulation by IFN-gamma, in antagonizing an ongoing Th2 immunity and Th2-dependent allergic responses.  相似文献   

3.
Allergen sensitization and allergic airway disease are likely to come about through the inhalation of Ag with immunostimulatory molecules. However, environmental pollutants, including nitrogen dioxide (NO2), may promote adaptive immune responses to innocuous Ags that are not by themselves immunostimulatory. We tested in C57BL/6 mice whether exposure to NO2, followed by inhalation of the innocuous protein Ag, OVA, would result in allergen sensitization and the subsequent development of allergic airway disease. Following challenge with aerosolized OVA alone, mice previously exposed via inhalation to NO2 and OVA developed eosinophilic inflammation and mucus cell metaplasia in the lungs, as well as OVA-specific IgE and IgG1, and Th2-type cytokine responses. One hour of exposure to 10 parts per million NO2 increased bronchoalveolar lavage fluid levels of total protein, lactate dehydrogenase activity, and heat shock protein 70; promoted the activation of NF-kappaB by airway epithelial cells; and stimulated the subsequent allergic response to Ag challenge. Furthermore, features of allergic airway disease were not induced in allergen-challenged TLR2-/- and MyD88-/- mice exposed to NO2 and aerosolized OVA during sensitization. These findings offer a mechanism whereby allergen sensitization and asthma may result under conditions of high ambient or endogenous NO2 levels.  相似文献   

4.
Chronic airway inflammation is a hallmark of asthma, an immune-based disease with great societal impact. Honokiol (HNK), a phenolic neurotransmitter receptor (γ-aminobutyric acid type A) agonist purified from magnolia, has anti-inflammatory properties, including stabilization of inflammation in experimentally induced arthritis. The present study tested the prediction that HNK could inhibit the chronic inflammatory component of allergic asthma. C57BL/6 mice sensitized to and challenged with OVA had increased airway hyperresponsiveness to methacholine challenge and eosinophilia compared with naive controls. HNK-treated mice showed a reduction in airway hyperresponsiveness as well as a significant decrease in lung eosinophilia. Histopathology studies revealed a marked drop in lung inflammation, goblet cell hyperplasia, and collagen deposition with HNK treatment. Ag recall responses from HNK-treated mice showed decreased proinflammatory cytokines in response to OVA, including TNF-α-, IL-6-, Th1-, and Th17-type cytokines, despite an increase in Th2-type cytokines. Regulatory cytokines IL-10 and TGF-β were also increased. Assessment of lung homogenates revealed a similar pattern of cytokines, with a noted increase in the number of FoxP3(+) cells in the lung. HNK was able to alter B and T lymphocyte cytokine secretion in a γ-aminobutyric acid type A-dependent manner. These results indicate that symptoms and pathology of asthma can be alleviated even in the presence of increased Th2 cytokines and that neurotransmitter agonists such as HNK have promise as a novel class of anti-inflammatory agents in the treatment of chronic asthma.  相似文献   

5.
Allergic asthma is characterized by infiltration of eosinophils, elevated Th2 cytokine levels, airway hyperresponsiveness, and IgE. In addition to eosinophils, mast cells, and basophils, a variety of cytokines are also involved in the development of allergic asthma. The pivotal role of eosinophils in the progression of the disease has been a subject of controversy. To determine the role of eosinophils in the progression of airway inflammation, we sensitized and challenged BALB/c wild-type (WT) mice and eosinophil-deficient ΔdblGATA mice with ovalbumin (OVA) and analyzed different aspects of inflammation. We observed increased eosinophil levels and a Th2-dominant response in OVA-challenged WT mice. In contrast, eosinophil-deficient ΔdblGATA mice displayed an increased proportion of mast cells and a Th17-biased response following OVA inhalation. Notably, the levels of IL-33, an important cytokine responsible for Th2 immune deviation, were not different between WT and eosinophil-deficient mice. We also demonstrated that mast cells induced Th17-differentiation via IL-33/ST2 stimulation in vitro. These results indicate that eosinophils are not essential for the development of allergic asthma and that mast cells can skew the immune reaction predominantly toward Th17 responses via IL-33 stimulation.  相似文献   

6.
Asthma is a chronic inflammatory airway disease characterized by airway hyperreactivity, increased mucus production, and reversible airway contraction. Asthma is a complex genetic trait caused by environmental factors in genetically predisposed individuals. The transportation of maternal antigen-specific IgG via amniotic fluid, placenta and breast milk plays an important role in passive immunity. First, to examine whether maternal passive immunity by the transportation of antigen-specific IgG via FcRn regulates allergic airway inflammation, ovalbumin-immunized FcRn+/− female mice were bred with FcRn−/− male mice to evaluate the degree of ovalbumin-induced allergic airway inflammation of FcRn−/− offspring. Maternal passive immunity regulated allergic airway inflammation in an FcRn-dependent manner. Second, to examine the role of maternal antigen-specific IgG1 injection into mothers, we intravenously injected ovalbumin-specific IgG1 into wild-type or FcRn+/− mice immediately after they gave birth. The offspring were sensitized and challenged with ovalbumin. Antigen-specific IgG1 administered to lactating mice reduced allergic airway inflammation in their offspring in an FcRn-dependent manner. Last, to exclude the factor of maternal passive immunity other than ovalbumin-specific IgG1, we administered ovalbumin-specific IgG1 orally to offspring after birth. Oral administration of ovalbumin-specific IgG1 to offspring during the lactating period prevented the development of allergic airway inflammation in an FcRn-dependent manner. These data show that the transfer of maternal antigen-specific IgG regulates the development of allergic airway inflammation early in life in an FcRn-dependent manner.  相似文献   

7.
Epidemiological and experimental evidence supports the notion that microbial infections that are known to induce Th1-type immune responses can suppress Th2 immune responses, which are characteristics of allergic disorders. However, live microbial immunization might not be feasible for human immunotherapy. Here, we evaluated whether induction of Th1 immunity by the immunostimulatory sequences of CpG-oligodeoxynucleotides (CpG-ODN), with or without culture filtrate proteins (CFP), from Mycobacterium tuberculosis would suppress ongoing allergic lung disease. Presensitized and ovalbumin (OVA)-challenged mice were treated subcutaneously with CpG, or CpG in combination with CFP (CpG/CFP). After 15 days of treatment, airway inflammation and specific T- and B-cell responses were determined. Cell transfer experiments were also performed. CpG treatment attenuated airway allergic disease; however, the combination CpG/CFP treatment was significantly more effective in decreasing airway hyperresponsiveness, eosinophilia and Th2 response. When an additional intranasal dose of CFP was given, allergy was even more attenuated. The CpG/CFP therapy also reduced allergen-specific IgG1 and IgE antibodies and increased IgG2a. Transfer of spleen cells from mice immunized with CpG/CFP also reduced allergic lung inflammation. CpG/CFP treatment induced CFP-specific production of IFN-γ and IL-10 by spleen cells and increased production of IFN-γ in response to OVA. The essential role of IFN-γ for the therapeutic effect of CpG/CFP was evidenced in IFN-γ knockout mice. These results show that CpG/CFP treatment reverses established Th2 allergic responses by an IFN-γ-dependent mechanism that seems to act both locally in the lung and systemically to decrease allergen-specific Th2 responses.  相似文献   

8.
Qiu H  Kuolee R  Harris G  Zhou H  Miller H  Patel GB  Chen W 《PloS one》2011,6(7):e22004
Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen.  相似文献   

9.
Allergen-independent maternal transmission of asthma susceptibility   总被引:6,自引:0,他引:6  
Maternal asthma is a risk factor for development of asthma in children, but mechanisms remain unclear. Offspring of asthmatic mother mice (sensitized and repeatedly exposed to OVA Ag) showed airway hyperresponsiveness and allergic pulmonary inflammation after an intentionally suboptimal OVA sensitization and exposure protocol that had little effect on normal offspring. Similar results were obtained when offspring of OVA-allergic mothers were exposed to an unrelated allergen, casein, indicating that the maternal effect is allergen independent and not transferred by OVA-specific Abs. Premating treatment with neutralizing anti-IL-4 Ab or reduction of maternal allergen exposure abrogated the maternal effect, showing a critical mechanistic role for IL-4 and suggesting an additional benefit of allergen avoidance.  相似文献   

10.
Bronchial asthma is an increasingly common disorder that remains poorly understood and difficult to manage. The disease is characterized by airway hyperresponsiveness, chronic inflammation, and mucus overproduction. Based on the finding that leukotriene B4 receptor 1 (BLT1) is expressed highly in Th2 lymphocytes, we analyzed the roles of BLT1 using an OVA-induced bronchial asthma model. BLT1-null mice did not develop airway hyperresponsiveness, eosinophilic inflammation, and hyperplasia of goblet cells. Attenuated symptoms were accompanied by reduced IgE production, and accumulation of IL-5 and IL-13 in bronchoalveolar lavage fluid, suggesting attenuated Th2-type immune response in BLT1-null mice. Peribronchial lymph node cells of sensitized BLT1-null mice showed much attenuated proliferation and production of Th2 cytokines upon re-stimulation with Ag in vitro. Thus, LTB4-BLT1 axis is required for the development of Th2-type immune response, and blockade of LTB4 functions through BLT1 would be novel and useful in the effort to ameliorate bronchial asthma and related Th2-biased immune disorders.  相似文献   

11.
Immunological mechanisms leading to increased asthma susceptibility in early life remain obscure. In this study, we examined the effects of neonatal Ab treatments targeting T cell populations on the development of an asthma syndrome. We used a model of increased asthma susceptibility where offspring of asthmatic BALB/c mother mice are more prone (than normal pups) to develop the disease. Neonatal pretreatment of naive pups with mAb directed against the IL-2Ralpha chain (CD25), the costimulatory molecule glucocorticoid-induced TNFR family related gene, and the inhibitory molecule CTLA-4 elicited contrasting effects in offspring depending on the mother's asthma status. Specifically, neonatal CD25(high) T cell depletion stimulated asthma susceptibility in normal offspring whereas it ameliorated the condition of pups born of asthmatic mothers. Conversely, glucocorticoid-induced TNFR family related gene ligation as a primary signal reduced the spleen cellularity and largely abrogated asthma susceptibility in asthma-prone offspring, without inducing disease in normal pups. Striking changes in Th1/Th2 cytokine levels, especially IL-4, followed mAb pretreatment and were consistent with the impact on asthma susceptibility. These results point to major differences in neonatal T cell population and responsiveness related to maternal asthma history. Interventions that temporarily remove and/or inactivate specific T cell subsets may therefore prove useful to attenuate early life asthma susceptibility and prevent the development of Th2-driven allergic airway disease.  相似文献   

12.
Allergen-specific CD4+ Th2 cells play an important role in the immunological processes of allergic asthma. Previously we have shown that, by using the immunodominant epitope OVA323-339, peptide immunotherapy in a murine model of OVA induced allergic asthma, stimulated OVA-specific Th2 cells, and deteriorated airway hyperresponsiveness and eosinophilia. In the present study, we defined four modulatory peptide analogues of OVA323-339 with comparable MHC class II binding affinity. These peptide analogues were used for immunotherapy by s.c. injection in OVA-sensitized mice before OVA challenge. Compared with vehicle-treated mice, treatment with the Th2-skewing wild-type peptide and a Th2-skewing partial agonistic peptide (335N-A) dramatically increased airway eosinophilia upon OVA challenge. In contrast, treatment with a Th1-skewing peptide analogue (336E-A) resulted in a significant decrease in airway eosinophilia and OVA-specific IL-4 and IL-5 production. Our data show for the first time that a Th1-skewing peptide analogue of a dominant allergen epitope can modulate allergen-specific Th2 effector cells in an allergic response in vivo. Furthermore, these data suggest that the use of Th1-skewing peptides instead of wild-type peptide may improve peptide immunotherapy and may contribute to the development of a successful and safe immunotherapy for allergic patients.  相似文献   

13.
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.  相似文献   

14.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

15.
Epidemiologic data suggest a link between nursing by asthmatic mothers and increased risk of allergy in babies. We sought to experimentally test the potential contribution of breast milk mediator(s) in a mouse model of maternal transmission of asthma risk by evaluating the effect of adoptive nursing on asthma susceptibility in the offspring. We measured airway hyperresponsiveness (AHR) and allergic airway inflammation (AI) after an intentionally suboptimal OVA Ag sensitization, tested the allergen independence of the maternal effect by using a second allergen, casein, for sensitization of the baby mice, and tested the potential role of cytokines by measuring their levels in breast milk. Offspring of asthmatic, but not normal, mothers showed AHR and AI, indicating a maternal transfer of asthma risk. After adoptive nursing, both groups (litters born to asthmatic mothers and nursed by normal mothers, and normal babies nursed by asthmatic mothers) showed AHR (enhanced pause after methacholine aerosol, 50 mg/ml, 3.7 +/- 0.7, 4.2 +/- 0.5, respectively, vs 1.1 +/- 0.1 normal controls, n = 25, p < 0.01) and AI, seen as eosinophilia on histology and bronchoalveolar lavage (40.7 +/- 4.5%, 28.7 +/- 3.7%, vs 1.0 +/- 0.5% normals, n = 25, p < 0.01) after OVA sensitization. Similar results using casein allergen were observed. Multiplex assays for cytokines (IFN-gamma, IL-2, IL-4, IL-5, TNF-alpha, and IL-13) in breast milk were negative. Breast milk is sufficient, but not necessary, to mediate allergen-independent maternal transmission of asthma risk to offspring.  相似文献   

16.
Airway mucosal dendritic cells (AMDC) and other airway APCs continuously sample inhaled Ags and regulate the nature of any resulting T cell-mediated immune response. Although immunity develops to harmful pathogens, tolerance arises to nonpathogenic Ags in healthy individuals. This homeostasis is thought to be disrupted in allergic respiratory disorders such as allergic asthma, such that a potentially damaging Th2-biased, CD4(+) T cell-mediated inflammatory response develops against intrinsically nonpathogenic allergens. Using a mouse model of experimental allergic airways disease (EAAD), we have investigated the functional changes occurring in AMDC and other airway APC populations during disease onset. Onset of EAAD was characterized by early and transient activation of airway CD4(+) T cells coinciding with up-regulation of CD40 expression exclusively on CD11b(-) AMDC. Concurrent enhanced allergen uptake and processing occurred within all airway APC populations, including B cells, macrophages, and both CD11b(+) and CD11b(-) AMDC subsets. Immune serum transfer into naive animals recapitulated the enhanced allergen uptake observed in airway APC populations and mediated activation of naive allergen-specific, airway CD4(+) T cells following inhaled allergen challenge. These data suggest that the onset of EAAD is initiated by enhanced allergen capture and processing by a number of airway APC populations and that allergen-specific Igs play a role in the conversion of normally quiescent AMDC subsets into those capable of inducing airway CD4(+) T cell activation.  相似文献   

17.
18.
Long-lived Th2 memory in experimental allergic asthma   总被引:3,自引:0,他引:3  
Although life-long immunity against pathogens is beneficial, immunological memory responses directed against allergens are potentially harmful. Because there is a paucity of information about Th2 memory cells in allergic disease, we established a model of allergic asthma in BALB/c mice to explore the generation and maintenance of Th2 memory. We induced disease without the use of adjuvants, thus avoiding Ag depots, and found that unlike allergic asthma in mice immunized with adjuvant, immunizing with soluble and aerosol OVA resulted in pathological lung lesions resembling human disease. To test memory responses we allowed mice with acute disease to recover and then re-exposed them to aerosol OVA a second time. Over 400 days later these mice developed OVA-dependent eosinophilic lung inflammation, airway hyperresponsiveness, mucus hypersecretion, and IgE. Over 1 year after recuperating from acute disease, mice had persistent lymphocytic lung infiltrates, Ag-specific production of IL-4 and IL-5 from spleen and lung cells in vitro, and elevated IgG1. Moreover, when recuperated mice were briefly aerosol challenged, we detected early expression of Th2 cytokine RNA in lungs. Taken together, these data demonstrate the presence of long-lived Th2 memory cells in spleen and lungs involved in the generation of allergic asthma upon Ag re-exposure.  相似文献   

19.
Knockout mice studies have revealed that NF-kappaB plays a critical role in Th2 cell differentiation and is therefore required for induction of allergic airway inflammation. However, the questions of whether NF-kappaB also plays a role in the effector phase of airway allergy and whether inhibiting NF-kappaB could have therapeutic value in the treatment of established asthma remain unanswered. To address these issues, we have assessed in OVA-sensitized wild-type mice the effects of selectively antagonizing NF-kappaB activity in the lungs during OVA challenge. Intratracheal administration of NF-kappaB decoy oligodeoxynucleotides to OVA-sensitized mice led to efficient nuclear transfection of airway immune cells, but not constitutive lung cells and draining lymph node cells, associated with abrogation of NF-kappaB activity in the airways upon OVA provocation. NF-kappaB inhibition was associated with strong attenuation of allergic lung inflammation, airway hyperresponsiveness, and local production of mucus, IL-5, IL-13, and eotaxin. IL-4 and OVA-specific IgE and IgG1 production was not reduced. This study demonstrates for the first time that activation of NF-kappaB in local immune cells is critically involved in the effector phase of allergic airway disease and that specific NF-kappaB inhibition in the lungs has therapeutic potential in the control of pulmonary allergy.  相似文献   

20.
Recent studies have highlighted the influence of fetal/maternal interactions on the development of asthma. Because IFN-gamma reduces Th2-mediated allergic responses, we assessed its capacity to modulate asthma in the offspring when injected into mothers during pregnancy. IFN-gamma was injected in CD1 female mice on day 6.5 of gestation. Immediately after birth, male newborns were housed in cages with interchanged mothers: the offspring from IFN-gamma-treated mothers were breastfed by normal mothers (IFN/nor), and those from normal mothers were breastfed by IFN-gamma-treated (Nor/IFN) or normal mothers (Nor/nor). Immediately after weaning, the spleen cells from IFN/nor and Nor/IFN mice produced less IL-4 and more IFN-gamma than Nor/nor mice when stimulated with Con A. At the age of 6-7 wk, mice were immunized with OVA on days 0 and 7. From day 14 to 16, they were exposed to aerosolized OVA. The bronchoalveolar lavage fluid from Nor/nor mice showed eosinophilia, a large number of these cells being present in perivascular and peribronchial regions of lung tissues. IFN/nor or Nor/IFN mice showed greatly reduced eosinophil numbers in bronchoalveolar lavage fluid. In addition, lung sections from IFN/nor, but not Nor/IFN mice showed almost normal histology. In OVA-sensitized IFN/nor and Nor/IFN mice, the production of IFN-gamma, IL-4, and IL-5 by spleen cells was significantly reduced as compared with cells from the OVA-sensitized Nor/nor group. IgE and anaphylactic IgG1 were also reduced in plasma of IFN/nor mice. In conclusion, the presence of IFN-gamma during pregnancy confers to the fetus a protection against allergenic provocations in the adult life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号