首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation.  相似文献   

2.
Exhausted CD8+ T cell responses during chronic viral infections are defined by a complex expression pattern of inhibitory receptors. However, very little information is currently available about the coexpression patterns of these receptors on human virus-specific CD8+ T cells and their correlation with antiviral functions, T cell differentiation and antigen recognition. We addressed these important aspects in a cohort of 38 chronically HCV infected patients and found a coexpression of inhibitory receptors such as 2B4, CD160 and KLRG1 in association with PD-1 in about half of the HCV-specific CD8+ T cell responses. Importantly, this exhaustive phenotype was associated with low and intermediate levels of CD127 expression, an impaired proliferative capacity, an intermediate T cell differentiation stage and absence of sequence variations within the corresponding epitopes, indicating ongoing antigen triggering. In contrast, a low expression of inhibitory receptors by the remaining HCV-specific CD8+ T cells occurred in concert with a CD127hi phenotype, an early T cell differentiation stage and presence of viral sequence variations within the corresponding epitopes. In sum, these results suggest that T cell exhaustion contributes to the failure of about half of HCV-specific CD8+ T cell responses and that it is determined by a complex interplay of immunological (e.g. T cell differentiation) and virological (e.g. ongoing antigen triggering) factors.  相似文献   

3.
4.
5.
CTLA-4 is known as a central inhibitor of T cell responses. It terminates T cell activation and proliferation and induces resistance against activation induced cell death. However, its impact on memory formation of adaptive immune responses is still unknown. In this study, we demonstrate that although anti-CTLA-4 mAb treatment during primary immunization of mice initially enhances the number of IFN-γ-producing CD4(+) T cells, it does not affect the size of the memory pool. Interestingly, we find that the CTLA-4 blockade modulates the quality of the memory pool: it decreases the amount of specialized "multifunctional" memory CD4(+) T cells coproducing IFN-γ, TNF-α, and IL-2 in response to Ag. The reduction of these cells causes an immense decrease of IFN-γ-producing T cells after in vivo antigenic rechallenge. Chimeric mice expressing CTLA-4-competent and -deficient cells unmask, which these CTLA-4-driven mechanisms are mediated CD4(+) T cell nonautonomously. In addition, the depletion of CD25(+) T cells prior to the generation of Ag-specific memory cells reveals that the constitutively CTLA-4-expressing natural regulatory T cells determine the quality of memory CD4(+) T cells. Taken together, these results indicate that although the inhibitory molecule CTLA-4 damps the primary immune response, its engagement positively regulates the formation of a high-quality memory pool equipped with multifunctional CD4(+) T cells capable of mounting a robust response to Ag rechallenge.  相似文献   

6.
CTLA-4 (CD152) is thought to be a negative regulator of T cell activation. Little is known about the function of CTLA-4 in Th2-type immune responses. We have investigated the effect of initial treatment with anti-CTLA-4 mAb on murine chronic graft-vs-host disease. Transfer of parental BALB/c splenocytes into C57BL/6 x BALB/c F1 mice induced serum IgE production, IL-4 expression by donor CD4+ T cells, and host allo-Ag-specific IgG1 production at 6-9 wk after transfer. Treatment with anti-CTLA-4 mAb for the initial 2 wk significantly reduced IgE and IgG1 production and IL-4 expression. Analysis of the splenic phenotype revealed the enhancement of donor T cell expansion, especially within the CD8 subset, and the elimination of host cells early after anti-CTLA-4 mAb treatment. This treatment did not affect early IFN-gamma expression by CD4+ and CD8+ T cells and anti-host cytolytic activity. Thus, blockade of CTLA-4 greatly enhanced CD8+ T cell expansion, and this may result in the regulation of consequent Th2-mediated humoral immune responses. These findings suggest a new approach for regulating IgE-mediated allergic immune responses by blockade of CTLA-4 during a critical period of Ag sensitization.  相似文献   

7.
CD8 T cell expansion and cytokine production is needed to generate an effective defense against viral invasion of the host. These features of CD8 T lymphocytes are regulated, especially during primary responses, by positive and negative costimulation. We show in this study that surface expression of CD152 is highly up-regulated on activated CD8 T lymphocytes during primary immune responses, suggesting a prominent regulatory role. Indeed, production of the proinflammatory cytokine IFN-gamma, but not TNF-alpha, by CD8 T cells was inhibited by CD152 engagement. The inhibition was regulated independent of proliferation and IL-2 production, but dependent on the quality of the TCR signaling. We show that signals induced by CD152 on activated CD8 T lymphocytes reduce the frequency of IFN-gamma(high)-expressing cells. Our data also show that in activated CD8 T cells, the CD152-mediated inhibition of cytokine production is more pronounced than inhibition of their proliferation.  相似文献   

8.
The impaired function of CD8(+) T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8(+) T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8(+) T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8(+) T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-gamma, TNF-alpha, and granzyme B production by CD8(+) T cells. In addition, the impaired CD8(+) T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8(+) T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8(+) T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection.  相似文献   

9.
Immune dysregulation in HIV-1 infection is associated with increased expression of inhibitory molecules such as CTLA-4, TGF-β, and IL-10. In this study we examined one potential mechanism for regulating TGF-β and IL-10 expression by HIV-specific suppressor CD8+ T cells. No overlap between TGF-β, IL-10, and IFN-γ cytokine production by HIV-specific CD8+ T cells was observed. TGF-β positive and IL-10 positive cells were FOXP3 negative, CD25 negative, and displayed a heterogeneous surface expression of CD127. TGF-β and IL-10 positive CD8+ T cells did not express CTLA-4. Nevertheless, CTLA-4 blockade resulted in a significant decrease in HIV-specific TGF-β positive and IL-10 positive CD8+ T cell responses, and a concomitant increase in HIV-specific IFN-γ positive CD8+ T cell responses. Depletion of CD4+ T cells abrogated the impact of CTLA-4 on HIV-specific TGF-β positive and IL-10 positive CD8+ T cells. Our study suggests that CTLA-4 Signaling on CD4+ T cells regulates the inhibitory functions of the HIV-specific suppressor CD8+ T cells.  相似文献   

10.
11.
CTLA-4 (CD152) engagement can down-regulate T cell activation and promote the induction of immune tolerance. However, the strategy of attenuating T cell activation by engaging CTLA-4 has been limited by sharing of its natural ligands with the costimulatory protein CD28. In the present study, a CTLA-4-specific single-chain Ab (scFv) was developed and expressed on the cell surface to promote selective engagement of this regulatory molecule. Transfectants expressing anti-CTLA-4 scFv at their surface bound soluble CTLA-4 but not soluble CD28. Coexpression of anti-CTLA-4 scFv with anti-CD3epsilon and anti-CD28 scFvs on artificial APCs reduced the proliferation and IL-2 production by resting and preactivated bulk T cells as well as CD4+ and CD8+ T cell subsets. Importantly, expression of anti-CTLA-4 scFv on the same cell surface as the TCR ligand was essential for the inhibitory effects of CTLA-4-specific ligation. CTLA-4-mediated inhibition of tyrosine phosphorylation of components of the proximal TCR signaling apparatus was similarly dependent on coexpression of TCR and CTLA-4 ligands on the same surface. These findings support a predominant role for CTLA-4 function in the modification of the proximal TCR signal. Using T cells from DO11.10 and 2C TCR transgenic mice, negative regulatory effects of selective CTLA-4 ligation were also demonstrated during the stimulation of Ag-specific CD4+ and CD8+ T cells by MHC/peptide complexes. Together these studies demonstrate that selective ligation of CTLA-4 using a membrane-bound scFv results in attenuated T cell responses only when coengaged with the TCR during T cell/APC interaction and define an approach to harnessing the immunomodulatory potential of CTLA-4-specific ligation.  相似文献   

12.
Programmed T cell differentiation is critically influenced by the complement of costimulatory and coinhibitory signals transmitted during initial antigen encounter. We previously showed that selective CD28 blockade with novel domain antibodies that leave CTLA-4-mediated coinhibitory signaling intact resulted in more profound attenuation of donor-reactive T cell responses and improved graft survival in a murine transplant model. Selective CD28 blockade was also associated with decreased ICOS expression on donor-reactive CD8+ T cell responses as compared to CTLA-4 Ig, but the functional importance of this reduced ICOS expression was not known. In this study, we created retrogenic donor-reactive CD8+ T cells that overexpress ICOS in order to determine whether reduced ICOS expression mechanistically underlies the increased efficacy of selective CD28 blockade in controlling graft-specific T cell responses as compared to conventional costimulation blockade with CTLA-4 Ig. Results indicated that the ability of selective CD28 blockade to blunt donor-reactive CD8+ T cell expansion following transplantation was independent of its ability to inhibit ICOS expression. Furthermore, we have previously published that 2B4 coinhibitory signals are functionally important for controlling graft-specific CD8+ T cell responses in mice treated with CD28 blockade. Here we used a co-adoptive transfer approach to determine that 2B4 coinhibitory signals on antigen-specific CD8+ T cells function in a cell-intrinsic manner to limit ICOS expression in the setting of selective CD28 blockade.  相似文献   

13.
14.
15.
The PD-1/PD-L pathway plays a major role in regulating T-cell exhaustion during chronic viral infections in animal models, as well as in humans, and blockade of this pathway can revive exhausted CD8+ T cells. We examined the expression of PD-1 and its ligands, PD-L1 and PD-L2, in multiple tissues during the course of chronic viral infection and determined how the amount of PD-1 expressed, as well as the anatomical location, influenced the function of exhausted CD8 T cells. The amount of PD-1 on exhausted CD8 T cells from different anatomical locations did not always correlate with infectious virus but did reflect viral antigen in some tissues. Moreover, lower expression of PD-L1 in some locations, such as the bone marrow, favored the survival of PD-1Hi exhausted CD8 T cells, suggesting that some anatomical sites might provide a survival niche for subpopulations of exhausted CD8 T cells. Tissue-specific differences in the function of exhausted CD8 T cells were also observed. However, while cytokine production did not strictly correlate with the amount of PD-1 expressed by exhausted CD8 T cells from different tissues, the ability to degranulate and kill were tightly linked to PD-1 expression regardless of the anatomical location. These observations have implications for human chronic infections and for therapeutic interventions based on blockade of the PD-1 pathway.Chronic viral infections are often associated with CD8+ T-cell dysfunction (30). This dysfunction, termed exhaustion, includes defects in the ability to produce antiviral cytokines, poor cytotoxicity, a loss of antigen-independent self-renewal, and the inability to vigorously re-expand following antigen exposure (30). These functional deficiencies contrast with the highly functional memory CD8+ T cells that are generated after acute infection and maintained via interleukin-7 (IL-7)- and IL-15-mediated homeostatic proliferation (30). During chronic viral infections, T-cell exhaustion often correlates with poor control of viral replication (3, 8, 38, 39). Thus, there is considerable interest in developing strategies to reverse exhaustion and restore function in virus-specific CD8+ T cells during chronic infections.Recent studies have revealed an important role for the negative regulatory molecule PD-1 in CD8 T-cell exhaustion during chronic viral infections (29). PD-1, a member of the CD28/CTLA-4 family of costimulatory/coinhibitory receptors, contains both ITIM and ITSM motifs in the intracellular tail and can deliver negative signals, at least partly via recruitment of the phosphatase Shp-2 (29). A role for PD-1 in regulating T-cell responses to chronic viral infections was first observed using lymphocytic choriomeningitis virus (LCMV) infection of mice, where PD-1 was found to be highly expressed on exhausted CD8+ T cells from chronically infected animals but not on functional memory CD8+ T cells from mice that had cleared an acute strain of the virus (3). In vivo blockade of the PD-1 pathway led to a dramatic increase in the number of virus-specific CD8+ T cells, improved functionality of these cells, and enhanced control of viral replication (3). These observations were extended to human chronic viral infections, and a series of studies have demonstrated that human immunodeficiency virus (HIV)-, hepatitis C virus (HCV)-, and HBV-specific CD8+ T cells upregulate PD-1 in humans compared to CD8+ T cells specific for nonpersisting viruses such as influenza virus or vaccinia virus (6-8, 24, 26, 32, 33, 42). Increasing PD-1 expression also correlates with disease status during HIV infection (8, 42). In vitro blockade of PD-1-PD-L interactions can reinvigorate exhausted virus-specific T-cell responses in humans and appears to have a prominent impact on proliferative expansion and/or prevention of apoptosis in these cases (9, 24, 32). Finally, recent results from in vivo blockade in the macaque simian immunodeficiency virus (SIV) infection model demonstrated the effectiveness of blocking PD-1 in primates during chronic viral infection (36). In these studies, PD-1 blockade enhanced virus-specific T and B-cell responses, lowered viral load, and improved the survival of chronically infected animals. Thus, PD-1 has emerged as not only a major regulator of T-cell exhaustion and viral control during chronic infection but also as an important potential therapeutic target.Despite these important studies and the clear impact of PD-1 blockade on the reversal of T-cell exhaustion, important questions remain. For example, previous work has demonstrated that PD-1 expression is not uniform on subsets of exhausted CD8 T cells (4). However, the expression of PD-1 on exhausted CD8 T cells in multiple tissues, and the relationship between PD-1 expression in these tissues to viral load, the PD-1 ligands and function has not been examined. Given the nonlymphoid accumulation of virus-specific CD8 T cells during chronic viral infections (11, 39) and the predilection of many important chronic infections for replicating in anatomically restricted locations (e.g., HCV and the liver, HIV and mucosal tissues, etc.), the dynamics of PD-1 expression by exhausted CD8 T cells outside the blood and spleen could have important therapeutic implications.In the present study we examined these issues using the mouse model of LCMV infection. Our results demonstrate that exhausted CD8 T cells have a wide range of PD-1 expression in different tissues of chronically infected mice. Virus-specific CD8 T cells in some anatomical locations such as the liver, brain, and bone marrow (BM) expressed high PD-1 for substantially longer than virus-specific CD8+ T cells from the spleens or blood of the same mice. Although PD-1 expression in the spleen correlated well with reduced gamma interferon (IFN-γ) and tumor necrosis factor (TNF) production, the PD-1Hi virus-specific CD8+ T cells from the BM remained capable of producing antiviral cytokines ex vivo. In contrast, a strong negative correlation between PD-1 expression and cytotoxicity existed for exhausted CD8 T cells from all tissues tested. PD-L1 expression was high in the spleen, whereas in the BM antigen-presenting cell (APC) populations expressed lower amounts of PD-L1. Survival of PD-1Hi CD8+ T cells from the BM was decreased in the presence of splenic APCs, suggesting that different tissue microenvironments in vivo could selectively support the persistence of PD-1Hi exhausted CD8 T cells. Since PD-1 expression differs by anatomical location, these observations suggest that PD-1 blockade in vivo will have varying impacts on exhausted CD8 T cells from different tissues or anatomical locations. These observations have implications for human chronic infections such as HBV, HCV, and HIV.  相似文献   

16.
In this study, we examined in vitro the role of CTLA-4 costimulation in the polarization of naive CD4+ T cells toward the Th1 subset. When CTLA-4 costimulation was blocked by the inclusion of anti-CTLA-4 Fab in cultures during priming of naive CD4+ T cells with anti-CD3 in the presence of splenic adherent cells, they were polarized toward the Th2 subset. Conversely, the engagement of CTLA-4 with immobilized anti-CTLA-4 or with CD80-P815 cells polarized naive CD4+ T cells costimulated with anti-CD3 and anti-CD28 toward the Th1 subset. The CTLA-4 costimulation during priming augmented TGF-beta1 mRNA accumulation in naive CD4+ T cells, and the inclusion of anti-TGF-beta in cultures for priming suppressed the effect of CTLA-4 costimulation on the Th1 polarization. The addition of low doses of TGF-beta1 in cultures for priming of naive CD4+ T cells enhanced the production of Th1 cytokines upon secondary stimulation, although Th2 cytokine production was not affected by the doses of TGF-beta1. The CTLA-4 costimulation was also shown to suppress IL-4 production of naive CD4+ T cells upon priming. These results indicate that the costimulation against CTLA-4 drives polarization of naive CD4+ T cells toward the Th1 subset independent of IL-12 through, at least in part, the enhancement of TGF-beta1 production, and it also hampers Th2 subset differentiation by affecting IL-4 production of naive CD4+ T cells.  相似文献   

17.

Background

Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration.

Methodology/Principal Findings

We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo.

Conclusions/Significance

We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge.  相似文献   

18.
Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4+ and CD8+ T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.  相似文献   

19.
CD4+CD25+ T cells play a pivotal role in immunological homeostasis by their capacity to exert immunosuppressive activity. However, the mechanism by which these cells function is still a subject for debate. We previously reported that surface (membrane) TGF-beta produced by CD4+CD25+ T cells was an effector molecule mediating suppressor function. We now support this finding by imaging surface TGF-beta on Foxp3+CD4+CD25+ T cells in confocal fluorescence microscopy. Then, using a TGF-beta-sensitive mink lung epithelial cell (luciferase) reporter system, we show that surface TGF-beta can be activated to signal upon cell-cell contact. Moreover, if such TGF-beta signaling is blocked in an in vitro assay of CD4+CD25+ T cell suppression by a specific inhibitor of TGF-betaRI, suppressor function is also blocked. Finally, we address the role of CTLA-4 in CD4+CD25+ T cell suppression, showing first that whereas anti-CTLA-4 does not block in vitro suppressor function, it does complement the blocking activity of anti-TGF-beta. We then show with confocal fluorescence microscopy that incubation of CD4+CD25+ T cells with anti-CTLA-4- and rB7-1/Fc-coated beads results in accumulation of TGF-beta at the cell-bead contact site. This suggests that CTLA-4 signaling facilitates TGF-beta-mediated suppression by intensifying the TGF-beta signal at the point of suppressor cell-target cell interaction.  相似文献   

20.
Mechanisms leading to the observed immune dysregulation in HIV-1 infection are not well understood. HIV-specific IL-10-positive CD8(+) T cells are increased in advanced HIV disease. We have previously reported that Gag-specific IL-10-positive CD8(+) T cells suppressed cytolysis. In this study we describe the suppressive effect of Nef-specific IL-10-positive CD8(+) T cells. Interestingly, simultaneous removal of both Gag- and Nef-specific IL-10-positive CD8(+) T cells led to higher HIV-specific cytolysis compared with the removal of Nef-specific IL-10-positive CD8(+) T cells alone. We also examined the level of programmed cell death-1 (PD-1) as a measure of immune dysfunction in association with IL-10-positive suppressor CD8(+) T cells. The level of PD-1 expression on CD107-positive effector CD8(+) T cells was significantly increased when IL-10-positive suppressor CD8(+) T cells were present (p < 0.05). Our results suggest that IL-10-positive suppressor CD8(+) T cells contribute to the immune dysfunction observed in advanced HIV infection and that the concomitant presence of multiple IL-10-positive CD8(+) T cell populations may have an additive suppressive effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号