首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
4.
The herpes simplex virus (HSV) virion host shutoff protein (vhs) encoded by gene UL41 is an mRNA-specific RNase that triggers accelerated degradation of host and viral mRNAs in infected cells. We report here that vhs is also able to modulate reporter gene expression without greatly altering the levels of the target mRNA in transient-transfection assays conducted in HeLa cells. We monitored the effects of vhs on a panel of bicistronic reporter constructs bearing a variety of internal ribosome entry sites (IRESs) located between two test cistrons. As expected, vhs inhibited the expression of the 5′ cistrons of all of these constructs; however, the response of the 3′ cistron varied with the IRES: expression driven from the wild-type EMCV IRES was strongly suppressed, while expression controlled by a mutant EMCV IRES and the cellular ApaF1, BiP, and DAP5 IRES elements was strongly activated. In addition, several HSV type 1 (HSV-1) 5′ untranslated region (5′ UTR) sequences also served as positive vhs response elements in this assay. IRES activation was also observed in 293 and HepG2 cells, but no such response was observed in Vero cells. Mutational analysis has yet to uncouple the ability of vhs to activate 3′ cistron expression from its shutoff activity. Remarkably, repression of 5′ cistron expression could be observed under conditions where the levels of the reporter RNA were not correspondingly reduced. These data provide strong evidence that vhs can modulate gene expression at the level of translation and that it is able to activate cap-independent translation through specific cis-acting elements.The virion host shutoff protein (vhs) encoded by herpes simplex virus (HSV) gene UL41 is an endoribonuclease that is packaged into the tegument of mature HSV virions. Once delivered into the cytoplasm of newly infected cells, vhs triggers shutoff of host protein synthesis, disruption of preexisting polysomes, and degradation of host mRNAs (reviewed in reference 62). The vhs-dependent shutoff system destabilizes many cellular and viral mRNAs (36, 46, 67). The rapid decline in host mRNA levels presumably helps viral mRNAs gain access to the cellular translational apparatus. In addition, the relatively short half-lives of viral mRNAs contribute to the sharp transitions between the successive phases of viral protein synthesis by tightly coupling changes in the rates of synthesis of viral mRNAs to altered mRNA levels (46). These effects enhance virus replication and may account for the modest reduction in virus yield displayed by vhs mutants in cultured Vero cells (55, 61).vhs also plays a critical role in HSV pathogenesis: vhs mutants are severely impaired for replication in the corneas and central nervous systems of mice and cannot efficiently establish or reactivate from latency (63, 65, 66). Mounting evidence indicates that this attenuation stems at least in part from an impaired ability to disarm elements of the innate and adaptive host immune responses (reviewed in reference 62). For example, vhs suppresses certain innate cellular antiviral responses, including production of proinflammatory cytokines and chemokines (68); dampens the type I interferon system (11, 45, 49, 78); and blocks activation of dendritic cells (58). Moreover, vhs mutants display enhanced virulence in knockout mice lacking type I interferon (IFN) receptors (37, 45) or Stat1 (48) and are hypersensitive to the antiviral effects of IFN in some cells in tissue culture (11, 49, 68). Thus, vhs is arguably a bona fide virulence factor.vhs present in extracts of HSV virions or purified from bacteria has nonspecific RNase activity capable of degrading all RNA substrates (15, 70, 71, 79). However, vhs is highly selective in vivo, targeting mRNAs and sparing other cytoplasmic RNAs (36, 46). In vivo and in mammalian whole-cell extracts, vhs-induced decay of at least some mRNAs initiates near regions of translation initiation and proceeds in an overall 5′-to-3′ direction (12, 13, 29, 52). Moreover, vhs binds to the translation initiation factors eIF4H, eIF4B, and eIF4A II, all components of the cap recognition factor eIF4F (10, 16, 17). Thus, it has been proposed that vhs selectively targets actively translated mRNAs through interactions with eIF4F components (17). Consistent with this hypothesis, recent data document that eIF4H is required for vhs activity in vivo (59).A previous report from this laboratory documented that the internal ribosome entry sites (IRESs) of the picornaviruses poliovirus and encephalomyocarditis virus (EMCV) strongly target vhs-induced RNA cleavage events to sequences immediately 3′ to the IRES in an in vitro translation system derived from rabbit reticulocyte lysates (RRL) (13). IRES elements are highly structured RNA sequences that are able to direct cap-independent translational initiation (reviewed in references 21, 25, 30, and 64). In the case of the poliovirus and EMCV elements, this is achieved by directly recruiting the eIF4F scaffolding protein eIF4G, thus bypassing the requirement for the cap-binding eIF4F subunit, eIF4E (reviewed in reference 30). Based on these data, we suggested that vhs is strongly targeted to the picornavirus IRES elements via interactions with eIF4 factors.A growing number of cellular mRNAs have been proposed to bear IRES elements in their 5′ untranslated regions (5′ UTRs). These include many that are involved in cellular stress responses, apoptosis, and cell cycle progression (24, 64, 74). Given the striking ability of picornavirus IRES elements to target vhs RNase activity in vitro, we asked whether viral and cellular IRES elements are able to modify the susceptibility of mRNAs to vhs in vivo. During the course of preliminary experiments designed to test this hypothesis, we unexpectedly discovered that vhs is able to strongly activate gene expression controlled by some cellular IRES elements and HSV 5′ UTR sequences in in vivo bicistronic reporter assays. These observations are the subject of the present report.  相似文献   

5.
6.
PTP1B−/− mice are resistant to diet-induced obesity due to leptin hypersensitivity and consequent increased energy expenditure. We aimed to determine the cellular mechanisms underlying this metabolic state. AMPK is an important mediator of leptin''s metabolic effects. We find that α1 and α2 AMPK activity are elevated and acetyl-coenzyme A carboxylase activity is decreased in the muscle and brown adipose tissue (BAT) of PTP1B−/− mice. The effects of PTP1B deficiency on α2, but not α1, AMPK activity in BAT and muscle are neuronally mediated, as they are present in neuron- but not muscle-specific PTP1B−/− mice. In addition, AMPK activity is decreased in the hypothalamic nuclei of neuronal and whole-body PTP1B−/− mice, accompanied by alterations in neuropeptide expression that are indicative of enhanced leptin sensitivity. Furthermore, AMPK target genes regulating mitochondrial biogenesis, fatty acid oxidation, and energy expenditure are induced with PTP1B inhibition, resulting in increased mitochondrial content in BAT and conversion to a more oxidative muscle fiber type. Thus, neuronal PTP1B inhibition results in decreased hypothalamic AMPK activity, isoform-specific AMPK activation in peripheral tissues, and downstream gene expression changes that promote leanness and increased energy expenditure. Therefore, the mechanism by which PTP1B regulates adiposity and leptin sensitivity likely involves the coordinated regulation of AMPK in hypothalamus and peripheral tissues.Protein tyrosine phosphatase 1B (PTP1B) belongs to a family of tyrosine phosphatases with diverse roles in eukaryotes (2, 4). PTP1B attenuates insulin signaling by dephosphorylating the insulin receptor (19, 22, 61) and possibly IRS-1 (9, 23) and leptin signaling by dephosphorylating JAK2, which phosphorylates the leptin receptor and associated substrates (10, 45, 67). PTP1B-deficient mice are insulin hypersensitive, lean, and resistant to diet-induced obesity (20, 36) due, at least in part, to increased energy expenditure (36). The leanness can be explained by the absence of PTP1B in neurons, because neuron-specific PTP1B−/− mice also have reduced body weight and adiposity and increased energy expenditure (6). In contrast, muscle- and liver-specific PTP1B-deficient mice have normal body weight with improved insulin sensitivity, whereas adipose-PTP1B-deficient mice have increased body weight (6, 15, 16). These data suggest that PTP1B in peripheral tissues such as muscle and liver is an important mediator of peripheral insulin sensitivity, whereas PTP1B in the nervous system plays a critical role in regulating energy expenditure and adiposity (6).The adipocyte-derived hormone leptin plays an essential role in regulating energy homeostasis by acting on multiple tissues, most importantly the hypothalamus, to regulate food intake and energy expenditure (1). PTP1B−/− mice have enhanced basal and leptin-stimulated hypothalamic STAT3 phosphorylation and are hypersensitive to leptin''s effect on food intake and body weight (10, 67). The overexpression of PTP1B in heterologous cells dose dependently reduces the leptin-induced phosphorylation of JAK2 and STAT3 and inhibits leptin-stimulated STAT3-dependent reporter gene activation (10, 35, 39, 67). These and other data established that enhanced leptin sensitivity contributes to the leanness in PTP1B−/− mice. We sought to determine the cellular mechanisms underlying the altered energy homeostasis in the setting of PTP1B deficiency.AMP-activated protein kinase (AMPK) is a major mediator of leptin''s metabolic effects (43, 44). AMPK is a fuel-sensing enzyme complex activated by cellular stresses that increase AMP or deplete ATP, including hypoxia, ischemia, glucose deprivation, uncouplers of oxidative phosphorylation, exercise, and muscle contraction (66). AMPK also is activated by the antidiabetic drugs metformin (68) and the thiazolidinediones (21). Mechanisms involved in AMPK activation include (i) the binding of AMP to an allosteric site on the γ subunit, which renders the holoenzyme resistant to inactivating serine phosphatases and also may have direct allosteric effects on kinase activity (55), and (ii) phosphorylation by upstream AMPK kinases of the α (catalytic) subunits on Thr172, which is essential for kinase activity (29). Once activated, AMPK phosphorylates multiple downstream substrates, leading to the inhibition of ATP-utilizing pathways, such as fatty acid synthesis, and the activation of ATP-generating pathways, including fatty acid oxidation (34).The phosphorylation of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC) by AMPK results in the inhibition of ACC activity, decreased malonyl-CoA content, and a subsequent increase in fatty acid oxidation in skeletal muscle caused by the disinhibition of carnitine palmitoyltransferase 1 (27, 52, 62). The leptin stimulation of muscle fatty acid oxidation is mediated by AMPK (44). AMPK also is an important regulator of muscle mitochondrial biogenesis and function (7, 37, 48, 58, 63). This may, in part, be mediated by peroxisome proliferator-activated receptor γ (PPARγ)-coactivator 1α (PGC-1α), because AMPK induces the expression and phosphorylation of PGC-1α, which regulates mitochondrial biogenesis and muscle fiber type (31).In addition to a role for AMPK in leptin action in peripheral tissues, the inhibition of hypothalamic AMPK activity by leptin plays an important role in mediating leptin''s effect on food intake and energy homeostasis (43). This appears to involve neurons that express neuropeptide Y (NPY) and agouti-related peptide (AgRP), since the expression of constitutively active AMPK in the basomedial hypothalamus augments NPY/AgRP expression (43). Furthermore, the deletion of the AMPK α2 catalytic subunit specifically in these neurons results in leanness, whereas deletion in proopiomelanocortin (POMC)-expressing neurons results in mild obesity (13).To determine whether alterations in AMPK contribute to increased energy expenditure and leanness in PTP1B−/− mice, we investigated the AMPK pathway in peripheral tissues and hypothalamus. We demonstrate that the global absence of PTP1B alters AMPK and downstream biological processes in multiple tissues, and that neuronal PTP1B regulates AMPK activity in peripheral tissues in an isoform-specific manner. Our data establish a novel link between PTP1B and AMPK, two signaling molecules that are critical in the regulation of energy homeostasis.  相似文献   

7.
8.
Protein kinase B (PKB)/Akt is considered to be a key target downstream of insulin receptor substrate 2 (IRS2) in the regulation of β-cell mass. However, while deficiency of IRS2 in mice results in diabetes with insulin resistance and severe failure of β-cell mass and function, only loss of the PKBβ isoform leads to a mild metabolic phenotype with insulin resistance. Other isoforms were reported not to be required for metabolic regulation. To clarify the roles of the three PKB isoforms in the regulation of islet mass and glucose homeostasis, we assessed the metabolic and pancreatic phenotypes of Pkbα, Pkbβ, and Pkbγ-deficient mice. Our study uncovered a novel role for PKBα in the regulation of glucose homeostasis, whereas it confirmed that Pkbβ−/ mice are insulin resistant with compensatory increase of islet mass. Pkbα−/ mice displayed an opposite phenotype with improved insulin sensitivity, lower blood glucose, and higher serum glucagon concentrations. Pkbγ−/ mice did not show metabolic abnormalities. Additionally, our signaling analyses revealed that PKBα, but not PKBβ or PKBγ, is specifically activated by overexpression of IRS2 in β-cells and is required for IRS2 action in the islets.Adaptation of pancreatic islet mass and function relative to metabolic demand maintains glucose homeostasis and may prevent the development of type 2 diabetes. β-Cell proliferation, apoptosis, growth, and function are tightly regulated by various extracellular factors and intracellular signaling pathways (23, 24, 34). In β-cells, insulin receptor substrate 2 (IRS2) controls maintenance and expansion of islet mass (29, 31, 42). In fact, IRS2-deficient mice are insulin resistant, show β-cell failure and hyperglycemia, and finally develop diabetes (26, 42). In contrast, deficiency of IRS1 only causes insulin resistance without the development of diabetes due to a compensatory increase in functional β-cell mass (1, 38). These observations indicated that IRS2, but not IRS1, is necessary for maintenance and compensatory increase of β-cell mass. Furthermore, experiments with isolated islets revealed that overexpression of IRS2, but not of IRS1, can increase β-cell proliferation and protect cells against high-glucose-induced apoptosis (29). Downstream of IRS2, phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB) signaling is considered to be the critical pathway for the regulation of β-cell mass and function (12, 15, 16, 27). The serine-threonine kinase PKB, also known as Akt, is required for various cellular processes, from the regulation of cell cycle, survival, and growth to glucose and protein metabolism. In mammals, three PKB/Akt isoforms have been characterized and named PKBα/Akt1, PKBβ/Akt2, and PKBγ/Akt3. Although encoded by different genes on different chromosomes, the three isoforms display high homology at the protein level with 80 to 85% identical residues and the same structural organization (43). However, they differ in terms of tissue-specific expression. PKBα is expressed in most tissues and PKBβ is highly expressed in insulin-responsive tissues, whereas PKBγ expression is prominent in the brain and testes (17). All three isoforms are expressed in β-cells (30, 37). The roles of PKB in different tissues have been studied in transgenic-mouse models. While Pkbα−/ and Pkbγ−/ mice show impaired fetal growth and brain development, respectively, glucose homeostasis is unaffected in both models (9, 11, 14, 39, 46). In contrast, Pkbβ−/ mice are insulin resistant and mildly glucose intolerant and have less adipose tissue. Depending on the strain and gender, these mice show either late loss of β-cells followed by the development of diabetes and mild growth deficiency or compensatory increase of β-cell mass without age-dependent progression into overt hyperglycemia (10, 17). These studies suggested that PKBβ is the only isoform playing a role in the regulation of energy homeostasis. On the other hand, constitutive activation of PKBα in β-cells is sufficient to increase growth and proliferation (5, 40), and in INS1 cells it prevents free fatty acid (FFA)-induced apoptosis (44). Furthermore, antagonizing total PKB activity in β-cells by ectopic expression of a kinase-dead mutant causes defects in insulin secretion (4), suggesting that in islets PKB is required mainly for normal function of the β-cells. Although these data support the notion that PKB must play a role in pancreatic β-cells, they are not in line with the stronger metabolic phenotype displayed by IRS2-deficient mice. In fact, PKBα and PKBγ appear not to be required to regulate glucose homeostasis (9, 11, 39), and in the case of Pkbβ−/ mice, even though glucose homeostasis is impaired due to strong peripheral insulin resistance, the overall metabolic phenotype is far less severe than in Irs2−/ mice (10), indicating that the capacity for β-cell compensation is retained in the absence of PKBβ.The aim of this study was to clarify the role of PKB in the regulation of islet mass and to define the relevance of PKB isoforms for IRS2 action in β-cells. Although it had been shown that PKBα is dispensable for the regulation of glucose homeostasis (9, 11), we found lower blood glucose concentrations in Pkbα−/ mice. Based on this observation, we assessed in more detail the metabolic and the endocrine pancreatic phenotypes of Pkbα-, Pkbβ-, or Pkbγ-deficient mice. In addition, glucose uptake into fat cells, insulin secretion, and islet cell proliferation were investigated. Contrary to previous assumptions implying that PKBβ is the only (or at least the main) isoform playing a role in the regulation of glucose metabolism, we present evidence that both PKBα and PKBβ isoforms are required in the periphery for regulation of glucose homeostasis. While we confirmed that Pkbβ−/ mice are insulin resistant and glucose intolerant with compensatory increase of β-cell mass, Pkbα−/ mice showed lower blood glucose levels, were more insulin sensitive, and revealed higher serum glucagon concentrations accompanied by a mild increase in α-cell mass and proliferation. Moreover, our in vitro experiments showed that PKBα is specifically activated by IRS2 in β-cells and that its activation is required for IRS2-induced proliferation in islets.  相似文献   

9.
10.
11.
12.
13.
Cytotoxicity and proliferation capacity are key functions of antiviral CD8 T cells. In the present study, we investigated a series of markers to define these functions in virus-specific CD8 T cells. We provide evidence that there is a lack of coexpression of perforin and CD127 in human CD8 T cells. CD127 expression on virus-specific CD8 T cells correlated positively with proliferation capacity and negatively with perforin expression and cytotoxicity. Influenza virus-, cytomegalovirus-, and Epstein-Barr virus/human immunodeficiency virus type 1-specific CD8 T cells were predominantly composed of CD127+ perforin/CD127 perforin+, and CD127/perforin CD8 T cells, respectively. CD127/perforin and CD127/perforin+ cells expressed significantly more PD-1 and CD57, respectively. Consistently, intracellular cytokine (gamma interferon, tumor necrosis factor alpha, and interleukin-2 [IL-2]) responses combined to perforin detection confirmed that virus-specific CD8 T cells were mostly composed of either perforin+/IL-2 or perforin/IL-2+ cells. In addition, perforin expression and IL-2 secretion were negatively correlated in virus-specific CD8 T cells (P < 0.01). As previously shown for perforin, changes in antigen exposure modulated also CD127 expression. Based on the above results, proliferating (CD127+/IL-2-secreting) and cytotoxic (perforin+) CD8 T cells were contained within phenotypically distinct T-cell populations at different stages of activation or differentiation and showed different levels of exhaustion and senescence. Furthermore, the composition of proliferating and cytotoxic CD8 T cells for a given antiviral CD8 T-cell population appeared to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferation capacity, the levels of senescence and exhaustion, and antigen exposure of antiviral memory CD8 T cells.Cytotoxic CD8 T cells are a fundamental component of the immune response against viral infections and mediate an important role in immunosurveillance (7, 10, 55), and the induction of vigorous CD8 T-cell responses after vaccination is thought to be a key component of protective immunity (37, 41, 49, 50, 58, 60, 69). Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules containing perforin (pore-forming protein) and several granule-associated proteases, including granzymes (Grms) (5, 15, 20, 44). Several studies have recently advanced the characterization of the mechanism of granule-dependent cytotoxic activity and performed a comprehensive investigation of the content of cytotoxic granules in human virus-specific CD8 T cells (2, 19, 29, 44, 53).Heterogeneous profiles of cytotoxic granules have been identified in different virus-specific memory CD8 T cells and associated with distinct differentiation stages of memory CD8 T cells (2, 19, 29, 44). Furthermore, we have observed a hierarchy among the cytotoxic granules in setting the efficiency of cytotoxic activity and demonstrated that perforin (and to a lesser extent GrmB) but not GrmA or GrmK were associated with cytotoxic activity (29). Recently, a novel mechanism of perforin-dependent granule-independent CTL cytotoxicity has also been demonstrated (45).Major advances in the characterization of antigen (Ag)-specific CD4 and CD8 T cells have been made recently and have aimed at identifying functional profiles that may correlate with protective CD8 T-cell responses (1, 3, 4, 12, 13, 24, 28, 36-38, 40, 41, 49, 50, 56-58, 60, 64, 68). In particular, the functional characterization of antigen-specific T cells was mainly performed on the basis of (i) the pattern of cytokines secreted (i.e., gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], or macrophage inflammatory protein 1β [MIP-1β]), (ii) the proliferation capacity, and (iii) the cytotoxic capacity (13, 28, 59). Of note, degranulation activity (i.e., CD107a mobilization following specific stimulation) has been used as a surrogate marker of cytotoxic activity (11, 13).The term “polyfunctional” has been used to define T-cell immune responses that, in addition to typical effector functions such as secretion of IFN-γ, TNF-α, or MIP-1β and cytotoxic activity (measured by the degranulation capacity), comprise distinct T-cell populations able to secrete IL-2 and retain proliferation capacity (13, 28, 49, 50). Some evidence indicates that a hallmark of protective immune responses is the presence of polyfunctional T-cell responses (59). Furthermore, the ability to secrete IL-2 was shown to be linked to proliferation capacity, and both factors have been associated with protective antiviral immunity (13, 28, 49, 50). Although a lack of correlation between degranulation activity and GrmB expression was reported in mice (65), the relationship between degranulation activity and perforin expression has never been comprehensively investigated in mice and in humans.The private α chain of the IL-7 receptor (IL-7Rα, also called CD127) has been suggested to selectively identify CD8 T cells that will become long-lived memory cells (6, 34, 36). Moreover, it was shown in mice (34, 36) and humans (14, 48, 63) that the CD127high memory-precursor CD8 T cells produced IL-2 in contrast to CD127low effector CD8 T cells. Of interest, CD127 expression has also been shown to correlate with Ag-specific proliferation capacity in mice (34, 36). A similar correlation was observed in humans, although only for polyclonal stimulations (48). With the exception of studies performed in HIV-1 infection, where an association between CD127 expression and HIV-1 viremia has been shown (21, 22, 42, 48, 54), very limited information is available on the CD127 expression in human virus-specific CD8 T cells other that HIV-1.Although cytotoxic activity and proliferation capacity are key components of the antiviral cellular immune response, the relationship between these functions has been only investigated in nonprogressive HIV-1 infection (46), where these two functions were shown to be related. However, it still remains to be determined whether these functions are mediated by the same or by different T-cell populations.In the present study, we performed a comprehensive characterization of virus-specific CD8 T-cell responses against HIV-1, cytomegalovirus (CMV), Epstein Barr virus (EBV), and influenza virus (Flu) in order to (i) analyze the degree of concordance between degranulation activity and perforin/Grm expression; (ii) identify the relevance of CD127 in identifying virus-specific CD8 T cells endowed with proliferation capacity; (iii) delineate the relationship between proliferation capacity, cytotoxic activity, activation/differentiation stage, and level of exhaustion of CD8 T cells; and (iv) determine the influence of antigen exposure in shaping the functional composition of virus-specific CD8 T cells.Our data indicate that cytotoxic (as defined by perforin expression) and proliferating (as defined by CD127 expression or IL-2 secretion) virus-specific CD8 T cells are contained within distinct CD8 T-cell populations. Furthermore, the proportion of proliferating and cytotoxic T cells within a given virus-specific CD8 T-cell population appears to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferative capacity, differentiation stage, and Ag exposure of memory CD8 T cells.  相似文献   

14.
15.
16.
17.
We previously showed that agonistic antibodies to CD40 could substitute for CD4 T-cell help and prevent reactivation of murine gammaherpesvirus 68 (MHV-68) in the lungs of major histocompatibility complex (MHC) class II−/− (CII−/−) mice, which are CD4 T cell deficient. Although CD8 T cells were required for this effect, no change in their activity was detected in vitro. A key question was whether anti-CD40 treatment (or CD4 T-cell help) changed the function of CD8 T cells or another cell type in vivo. To address this question, in the present study, we showed that adoptive transfer of CD8 T cells from virus-infected wild-type mice or anti-CD40-treated CII−/− mice caused a significant reduction in lung viral titers, in contrast to those from control CII−/− mice. Anti-CD40 treatment also greatly prolonged survival of infected CII−/− mice. This confirms that costimulatory signals cause a change in CD8 T cells enabling them to maintain effective long-term control of MHV-68. We investigated the nature of this change and found that expression of the inhibitory receptor PD-1 was significantly increased on CD8 T cells in the lungs of MHV-68-infected CII−/−, CD40−/−, or CD80/86−/− mice, compared with that in wild-type or CD28/CTLA4−/− mice, correlating with the level of viral reactivation. Furthermore, blocking PD-1-PD-L1 interactions significantly reduced viral reactivation in CD4 T-cell-deficient mice. In contrast, the absence of another inhibitory receptor, NKG2A, had no effect. These data suggest that CD4 T-cell help programs a change in CD8 T-cell function mediated by altered PD-1 expression, which enables effective long-term control of MHV-68.Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen which is closely related to Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV) (17, 64). Intranasal administration of MHV-68 to mice results in acute productive infection of lung epithelial cells and a latent infection in various cell types, including B lymphocytes, dendritic cells, epithelial cells, and macrophages (18, 19, 52, 53, 61, 65). The virus induces an inflammatory infiltrate in the lungs, lymph node enlargement, splenomegaly, and mononucleosis comprising increased numbers of activated CD8 T cells in the blood (53, 58). It has also been reported to induce lymphoproliferative disease/lymphoma in immunocompromised mice (30, 55, 60). Thus, the pathogenesis resembles that of EBV in humans, although structurally, the virus is more closely related to KSHV.Infectious MHV-68 is cleared from the lungs by a T-cell-dependent mechanism 10 to 15 days after infection (18, 53, 56). In wild-type mice, the lungs remain clear of replicating virus thereafter. Although CD4 T cells are not essential for primary clearance of replicating virus, they are required for effective long-term control (11). Thus, major histocompatibility complex (MHC) class II−/− mice that lack CD4 T cells or mice rendered CD4 deficient by antibody treatment initially clear infectious virus from the lungs. However, infectious virus reactivates in the lungs 10 to 15 days later and gradually increases in titer (11, 43). The infected CD4-deficient mice eventually die, apparently from long-term lung damage due to continuing lytic viral replication (11). MHC class II−/− mice do not produce antibody to T-dependent antigens (10). Cytotoxic T-lymphocyte (CTL) epitopes have been identified in open reading frame (ORF) 6 (p56, H-2Db-restricted), and ORF 61 (p79, H-2Kb-restricted) gene products, which appear to encode early lytic-phase proteins (32, 49). The epitopes are presented during two distinct phases during MHV-68 infection, which changes the pattern of CTL dominance (32, 51). However, there is no significant difference in the numbers of CD8 T cells specific for each epitope in wild-type mice and CD4 T-cell-deficient mice (4, 50). In addition, CTL activity measured in vitro does not differ substantially in the lungs of wild-type mice or CD4 T-cell-deficient mice (4, 11, 50). Furthermore, postexposure vaccination with the p56 epitope failed to prevent viral reactivation in class II−/− mice, despite dramatically expanding the number of CD8 T cells specific for the peptide (5). In contrast, vaccination of wild-type mice against these epitopes reduced lytic viral titers in the lung dramatically on subsequent challenge with MHV-68. B-cell-deficient mice clear MHV-68 with the kinetics of wild-type mice and do not show viral reactivation in the lungs (13, 61), suggesting that antibody is not essential for control of the virus. Depletion of CD4 T cells during the latent phase of infection in B-cell-deficient mice does not induce viral reactivation, whereas depletion of both CD4 and CD8 T-cell subsets provokes viral reactivation in the lungs (52). Short-term depletion of both CD4 and CD8 T-cell subsets during the latent phase of infection in wild-type mice does not lead to viral reactivation probably due to the presence of neutralizing antibody (11). Taken together, these results suggest that CD4 and CD8 T cells and B cells play overlapping roles in preventing or controlling reactivation of MHV-68 during the latent phase of infection. However, the B-cell- and CD8 T-cell-mediated control mechanisms do not develop in the absence of CD4 T cells.We, and others, have previously shown that the costimulatory molecule CD28 is not required for long-term control of MHV-68 (28, 29). However, interestingly, mice lacking both of the ligands for CD28, CD80 and CD86, show viral reactivation in the lung (21, 35). Our previously published data showed that agonistic antibodies to CD40 could substitute for CD4 T-cell function in the long-term control of MHV-68 (46). CD8 T-cell receptor-positive (TCR+) cells were required for this effect, while antibody production was not restored (45, 46). MHV-68-infected CD40L−/− mice (7) and CD40−/− mice (29) also showed viral reactivation in the lungs. However, no change in CD8 CTL activity was detected in in vitro assays following anti-CD40 treatment (46). A key question was whether anti-CD40 treatment (or CD4 T-cell help) caused a direct change in CD8 T-cell function or whether both CD8 T cells and an independent anti-CD40-sensitive step were required for viral control. To address this question, we used adoptive transfer of CD8 T cells from MHV-68-infected wild-type mice, anti-CD40-treated mice, or control MHC class II−/− mice to MHV-68-infected class II−/− recipients. We also investigated whether anti-CD40 treatment prolonged survival in addition to reducing lung viral titers. The heterodimeric molecule CD94/NKG2A has been implicated in negatively regulating the CD8 T-cell response to polyomavirus (38) and herpes simplex virus (HSV) (54), while the inhibitory receptor PD-1 (programmed death 1) has been implicated in T-cell exhaustion following infection with several other persistent viruses (2, 15, 20, 22, 26, 36, 39-41, 57, 67). In the present study, we investigated the effect of signaling via various costimulatory molecules on the expression of NKG2A and PD-1 and how these molecules influenced viral control.  相似文献   

18.
Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer''s disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110/ mice. Our results show that hsp110/ mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110/ mice compared to brain extracts from wild-type mice. Mice deficient in the Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110/ mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110/ mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer''s disease and other tauopathies.Diseases like Alzheimer''s disease (AD) and other tauopathies are defined by the expression of neurofibrillary tangles (NFTs) deposited mainly in neurons. The NFTs are aggregates of the hyperphosphorylated tau (p-tau) (3, 74). Normal tau increases microtubule stability, but tau can be hyperphosphorylated under disease conditions and released from microtubules (3, 5, 6). The molecular mechanisms involved in the formation of NFTs are not completely understood. However, accumulation of abnormal p-tau and NFTs causes neurodegeneration (3). A number of protein kinases, including glycogen synthase kinase 3 (GSK3) and cyclin-dependent protein kinase 5 (CDK5), have been shown to phosphorylate tau at Thr231 and Ser262 as well as several other sites that flank the microtubule binding repeat, leading to tangles of paired helical filaments (PHFs) similar to those observed in the brains of patients with AD (54, 72). Evidence shows that GSK3 physically interacts with tau and is thought to be the main contributor to the formation of NFTs and amyloid β (Aβ) plaques in AD patients (18, 53, 54). Phosphorylation of GSK3a/b at S9/S21 which is inhibitory to its activity during insulin signaling, leads to phosphorylation of tau in neurons (80). GSK3a/b phospho-S9/S21, p-tau, and 14-3-3zeta have been isolated in a 500-kDa complex, and the interaction has been shown to result in tau phosphorylation by GSK3 (1, 80). Although not well characterized, p-tau has been shown to be dephosphorylated by the B family regulatory subunit of the heterotrimeric PP2A holoenzyme (76). There are two protein phosphatase 2A (PP2A) binding sites on microtubule tau binding repeats, perhaps allowing tau to be more efficiently dephosphorylated by PP2A catalytic subunit (76).Both GSK3 and CDK5 are also known to be involved in the phosphorylation of amyloid precursor protein (APP) at Thr668 and APP processing and Aβ production (53, 58). Studies suggest that amyloid peptide can activate GSK3 signaling, and the increase in GSK3 activity can then contribute to abnormal APP processing. Indeed, reduction in GSK3 activity reduces amyloid peptide production in murine AD models (18, 53, 57, 71). Reduction in PP2A activity leads to altered APP regulation as well (26, 43). Additional molecules that affect tau hyperphosphorylation and APP processing are the peptidyl prolyl isomerases (9, 36, 51). Deletion of Pin1 isomerase in vivo leads to p-tau and neurodegeneration (42). Crossing Pin1-deficient mice with transgenic mice expressing mutant APP (APPβsw) leads to abnormal APP processing and accumulation of toxic amyloid β42 (Aβ42) species. Pin1, therefore, is implicated in isomerization of tau, perhaps facilitating its dephosphorylation (42). The presence of Pin1 has been implicated in promoting nonamyloidogenic processing of APP and reduction in toxic Aβ42 production (51).Hsp70/Hsc70 has been shown to preferentially bind to a hyperphosphorylated form of tau in the diseased human brain (49). Cross talk between the ubiquitin proteasome system (UPS) and molecular chaperones might also be critical in regulating the deposition and toxicity of tau (8, 16). These results suggest that the activity of Hsp70 and Hsp90 preserve the native structure and function of tau protein. Hsp70 and the C-terminal Hsp70-interacting protein (Chip) have been shown to regulate tau ubiquitination and degradation (11, 12, 21, 52, 65). Interestingly, Chip and βAPP interact, and Chip and Hsp70/90 expression have been shown to lower the cellular levels of Aβ and reduce Aβ toxicity in vitro (39). Misfolded proteins are either degraded through the UPS or are folded, at least in part, by the Hsps (4, 7).Eukaryotic cells possess a class of heat shock proteins (Hsps) related to the Hsp70 family. This Hsp100 family of proteins contains Hspa41 (Apg1 or OSP94), Hsp94 (Apg2), and Hsp110 (2, 17, 28, 61, 70, 77, 78). They were initially considered to be “holdases” that keep denatured proteins in solution, and no client proteins have been described for them (14, 15, 56, 62). Hsp110 interacts with Hsp70 and increases its ATPase activity (15, 56, 62). The main function of Hsp110 appears to be a nucleotide exchange factor (NEF) for Hsp70 (14, 64). In general, Hsp110 is known to induce suppression of aggregation and protein refolding, and it protects proteins from the damaging effects of various stresses; however, its physiological function in mammalian cells remains unknown (15, 60). In these studies, we examined the role of Hsp110 in central nervous system (CNS) homeostasis in vivo. We have found that hsp110/ mice exhibit an age-dependent accumulation of p-tau that is associated with pathological features, such as the appearance of NFTs and neurodegeneration. We also show that lack of Hsp110 leads to accelerated pathology as evidenced by the early appearance of senile plaques containing Aβ42 (a major toxic species [46]) in an AD transgenic mouse model. At the biochemical level, we show that Hsp110 interacts with tau, a number of Hsps, GSK3, Pin1, and PP2A. Furthermore, tau immunocomplexes pulled down from hsp110/ brain extracts possess elevated levels of PP2A, but the pulled-down PP2A has significantly lower activity than the PP2A from wild-type mice. Our studies therefore suggest a critical role for Hsp110 in maintaining the proper folding environment that is required for phosphorylation and dephosphorylation of tau and APP processing in vivo.  相似文献   

19.
20.
Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-γ). Here, we assessed the role of CD4+ T cells and IFN-γ on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-γ, CCL2 (MCP-1), CCL3 (MIP-1α), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-γ had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-γ signaling on macrophage lineage cells was assessed using transgenic mice, called “macrophages insensitive to interferon gamma” (MIIG) mice, that express a dominant-negative IFN-γ receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4+ T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4+ T-cell production of IFN-γ promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.Immune cell recruitment to and infiltration of the central nervous system (CNS) is central to the pathology of a variety of inflammatory neurological diseases, including infectious meningoencephalitis, multiple sclerosis, and cerebral ischemia (59, 60). Chemokines have been shown to be highly upregulated in both human diseases and animal models of neuroinflammation and are thought to be important mediators of immune cell entry into the CNS (59, 60). For example, during experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), the chemokines CCL2 (monocyte chemoattractant protein 1 [MCP-1α]), CCL3 (macrophage inflammatory protein 1α [MIP-1α]), CCL5 (regulated upon activation, T-cell expressed and secreted [RANTES]), and CXCL10 (gamma interferon [IFN-γ]-inducible protein 10 [IP-10]) are produced by either resident CNS cells or infiltrating cells (27) and serve to amplify the ongoing inflammatory response (25, 28). However, in some EAE studies, neither CCL3 nor CXCL10 were required for disease (72, 73). During CNS viral infection, CXCL10 and CCL5 are highly produced in several models (2, 41, 48, 82). In addition, mice deficient in CCR5, which binds (among others) CCL3 and CCL5, do not display impaired CNS inflammation after certain viral infections (13). Thus, the role of chemokines in CNS inflammation is likely complex and dissimilar between autoimmune and viral infection models.IFN-γ is present in the CNS during autoimmunity and infection (7, 54, 69). Several studies suggest that IFN-γ can be a potent inducer of CNS chemokine expression. Adenoviral expression of IFN-γ in the CNS strongly induced CCL5 and CXCL10 mRNA and protein, and this induction was dependent on the presence of the IFN-γ receptor (50). In EAE and Toxoplasma infection, mice deficient in IFN-γ or the IFN-γ receptor demonstrated reduced expression of several chemokines, including CCL2, CCL3, CCL5, and CXCL10 (26, 69). However, given the near-ubiquitous expression of the IFN-γ receptor (44), the mechanisms by which IFN-γ regulates CNS chemokine production remain to be elucidated.We studied neuroinflammation and immune-mediated disease using a well-studied mouse model of infection with lymphocytic choriomeningitis virus (LCMV). Intracranial (i.c.) injection of mice with LCMV results in seizures and death 6 to 8 days after inoculation. The onset of symptoms is associated with a massive influx of mononuclear cells into the cerebrospinal fluid (CSF), meninges, choroid plexus, and ependymal membranes (6, 8, 18), as well as the presence of proinflammatory cytokines (7, 38). The immune response is critical for disease, since infection of irradiated or T-cell-depleted mice leads to persistent infection with very high levels of virus in multiple tissues without the development of lethal meningitis (18, 34, 64). i.c. LCMV infection of β2-microglobulin-deficient mice (β2m−/− mice) also results in meningitis and production of proinflammatory cytokines and chemokines; however, meningitis occurs with a later onset and lower severity compared to wild-type mice (17, 24, 53, 57). Interestingly, i.c. LCMV infection of these mice also causes severe anorexia and weight loss (33, 38, 46, 52, 57) that is mediated by major histocompatibility complex (MHC) class II-restricted, CD4+ T cells (17, 46, 53, 57). Anorexia and weight loss are also observed in wild-type mice, but they succumb to lethal meningitis shortly thereafter (33), making study of this particular aspect of disease difficult. LCMV-induced weight loss, similar to what we have observed in β2m−/− mice also occurs in perforin-deficient mice, which possess CD8+ T cells (37). Although some reports have observed weight loss after peripheral LCMV infection (11, 45), we note that these studies used high doses of the clone 13 strain of LCMV, in contrast to our studies which have used the Armstrong strain of LCMV and orders of magnitude less virus (33, 38, 46, 52, 57). Although we cannot exclude a contribution of peripheral cells to weight loss in our i.c. Armstrong infection model, we previously showed that this weight loss does not occur with peripheral infection with LCMV Armstrong (33, 38), indicating that interactions between the CNS and the immune system are contribute substantially to disease.During LCMV infection, there is biphasic production of IFN-γ: a small, early peak of IFN-γ (most likely produced by NK or NKT cells), followed by T-cell-mediated production of IFN-γ (23, 75). Further, both CD4+ T cells and CD8+ T cells produce large amounts of IFN-γ after LCMV infection and T-cell production of IFN-γ is critical for LCMV-induced weight loss (35). Chemokines, especially CXCL10, CCL5, and CCL2, and their receptors, are upregulated in the brain after i.c. LCMV infection (2, 13). Brain chemokine mRNA expression after i.c. LCMV infection is reduced in IFN-γ-deficient mice and relatively absent in athymic mice (2). However, the mechanism(s) by which T cells and IFN-γ mediate the effects on CNS chemokine expression, cellular infiltration into the CNS, and LCMV-induced anorexic weight loss remain unclear.In the present study, we focused on two major questions. The first question concerned the role of IFN-γ on immune cell recruitment to and chemokine/cytokine production within the CNS? We found that macrophages and myeloid dendritic cells (DCs) require IFN-γ for their accumulation within the CNS. Second, since macrophages and myeloid DCs are the predominant cellular infiltrate, we sought to determine whether IFN-γ signaling on these cells was direct with regard to their recruitment and to chemokine/cytokine production. We found that IFN-γ signaling in macrophage lineage cells contributes significantly to their recruitment, to chemokine production in the CNS, and to anorexic weight loss. Together, these data suggest that much of the proinflammatory effects of IFN-γ in the CNS are mediated by the effects of IFN-γ on CD68-bearing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号