首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystic hydatid disease in humans is caused by the zoonotic parasite Echinococcus granulosus. As an aid to control transmission of the parasite, a vaccine has been produced for prevention of infection in the parasite’s natural animal intermediate hosts. The vaccine utilizes the recombinant oncosphere protein, EG95. An investigation into the genetic variability of EG95 was undertaken in this study to assess potential antigenic variability in E. granulosus with respect to this host-protective protein. Gene-specific PCR conditions were first established to preferentially amplify the EG95 vaccine-encoding gene (designated eg95-1) from the E. granulosus genome that also contains several other EG95-related genes. The optimized PCR conditions were used to amplify eg95-1 from several parasite isolates in order to determine the protein-coding sequence of the gene. An identical eg95-1 gene was amplified from parasites showing a G1 or G2 genotype of E. granulosus. However, from isolates having a G6 or G7 genotype, a gene was amplified which had substantial nucleotide substitutions (encoding amino acid substitutions) compared with the eg95 gene family members. The amino acid substitutions of EG95 in the G6/G7 genotypes may affect the antigenicity/efficacy of the EG95 recombinant antigen against parasites of these genotypes. These findings indicate that characterization of eg95 gene family members in other strains/isolates of E. granulosus may provide valuable information about the potential for the EG95 hydatid vaccine to be effective against E. granulosus strains other than the G1 genotype.  相似文献   

2.
Cystic echinococcosis (CE) is a zoonotic disease caused by the cestode parasite Echinococcus granulosus. The disease has an important impact on human health as well as economic costs including the cost of treatment as well as loss of productivity for the livestock industry. In many parts of the world where the disease is endemic, sheep and other livestock play an important role in the parasite's transmission. A vaccine to protect livestock against CE can be effective in reducing transmission and economic costs of the disease. A recombinant antigen vaccine has been developed against infection with E. granulosus (EG95) which could potentially be used to reduce the level of E. granulosus transmission and decrease the incidence of human infections. Further development of the EG95 recombinant vaccine as a combined product with clostridial vaccine antigens is one potential strategy which could improve application of the hydatid vaccine by providing an indirect economic incentive to livestock owners to vaccinate against CE. In this study we investigated the efficacy of the EG95 recombinant vaccine produced in Morocco by vaccination of sheep, including a combined vaccine incorporating EG95 and clostridia antigens. Vaccination with EG95 either as a monovalent vaccine or combined with clostridia antigens, protected sheep against a challenge infection with E. granulosus eggs and induced a strong, long lasting, and specific antibody response against the EG95 antigen.  相似文献   

3.
Cystic echinococcosis (CE) is a widely distributed zoonosis that is highly endemic in the Mediterranean basin. The disease represents a serious public health threat and causes economic losses. The parasite life-cycle involves dogs and ruminants as definitive and intermediate hosts; humans are accidently infected, causing serious clinical issues. Vaccination of ruminants and dog treatments represent the most efficient measures to prevent parasite transmission. The recombinant protein vaccine, EG95, has been used successfully in sheep vaccine trials against CE in several countries. In this study, we expressed the modified antigen, EG95NC-GST, in Escherichia coli for use as a vaccine against Echinococcus granulosus in ruminants. We tested three different media formulations for E. coli culture and established for each culture conditions for optimal levels of soluble EG95 expression. The results demonstrate that SOC and TB media provided high yields in cell density and EG95 protein expression. Purification of the recombinant protein with affinity chromatography (using FPLC) was also performed to increase the purity of the EG95NC?-GST antigen.  相似文献   

4.
5.
Echinococcosis is a serious helminthic zoonosis in humans, livestock and wildlife. The pathogenic organisms are members of the genus Echinococcus (Cestoda: Taeniidae). Life cycles of Echinococcus spp. are consistently dependent on predator–prey association between two obligate mammalian hosts. Carnivores (canids and felids) serve as definitive hosts for adult tapeworms and their herbivore prey (ungulates, rodents and lagomorphs) as intermediate hosts for metacestode larvae. Humans are involved as an accidental host for metacestode infections. The metacestodes develop in various internal organs, particularly in liver and lungs. Each metacestode of Echinococcus spp. has an organotropism and a characteristic form known as an unilocular (cystic), alveolar or polycystic hydatid. Recent molecular phylogenetic studies have demonstrated that the type species, Echinococcus granulosus, causing cystic echinococcosis is a cryptic species complex. Therefore, the orthodox taxonomy of Echinococcus established from morphological criteria has been revised from the standpoint of phylogenetic systematics. Nine valid species including newly resurrected taxa are recognised as a result of the revision. This review summarises the recent advances in the phylogenetic systematics of Echinococcus, together with the historical backgrounds and molecular epidemiological aspects of each species. A new phylogenetic tree inferred from the mitochondrial genomes of all valid Echinococcus spp. is also presented. The taxonomic nomenclature for Echinococcus oligarthrus is shown to be incorrect and this name should be replaced with Echinococcus oligarthra.  相似文献   

6.
Genetic variability in the species group Echinococcus granulosus sensu lato is well recognised as affecting intermediate host susceptibility and other biological features of the parasites. Molecular methods have allowed discrimination of different genotypes (G1–10 and the ‘lion strain’), some of which are now considered separate species. An accumulation of genotypic analyses undertaken on parasite isolates from human cases of cystic echinococcosis provides the basis upon which an assessment is made here of the relative contribution of the different genotypes to human disease. The allocation of samples to G-numbers becomes increasingly difficult, because much more variability than previously recognised exists in the genotypic clusters G1–3 (=E. granulosus sensu stricto) and G6–10 (Echinococcus canadensis). To accommodate the heterogeneous criteria used for genotyping in the literature, we restrict ourselves to differentiate between E. granulosus sensu stricto (G1–3), Echinococcus equinus (G4), Echinococcus ortleppi (G5) and E. canadensis (G6–7, G8, G10). The genotype G1 is responsible for the great majority of human cystic echinococcosis worldwide (88.44%), has the most cosmopolitan distribution and is often associated with transmission via sheep as intermediate hosts. The closely related genotypes G6 and G7 cause a significant number of human infections (11.07%). The genotype G6 was found to be responsible for 7.34% of infections worldwide. This strain is known from Africa and Asia, where it is transmitted mainly by camels (and goats), and South America, where it appears to be mainly transmitted by goats. The G7 genotype has been responsible for 3.73% of human cases of cystic echinococcosis in eastern European countries, where the parasite is transmitted by pigs. Some of the samples (11) could not be identified with a single specific genotype belonging to E. canadensis (G6/10). Rare cases of human cystic echinococcosis have been identified as having been caused by the G5, G8 and G10 genotypes. No cases of human infection with G4 have been described. Biological differences between the species and genotypes have potential to affect the transmission dynamics of the parasite, requiring modification of methods used in disease control initiatives. Recent investigations have revealed that the protective vaccine antigen (EG95), developed for the G1 genotype, is immunologically different in the G6 genotype. Further research will be required to determine whether the current EG95 vaccine would be effective against the G6 or G7 genotypes, or whether it will be necessary, and possible, to develop genotype-specific vaccines.  相似文献   

7.
This review examines parasite zoonoses and wildlife in the context of the One Health triad that encompasses humans, domestic animals, wildlife and the changing ecosystems in which they live. Human (anthropogenic) activities influence the flow of all parasite infections within the One Health triad and the nature and impact of resulting spillover events are examined. Examples of spillover from wildlife to humans and/or domestic animals, and vice versa, are discussed, as well as emerging issues, particularly the need for parasite surveillance of wildlife populations. Emphasis is given to Trypanosoma cruzi and related species in Australian wildlife, Trichinella, Echinococcus, Giardia, Baylisascaris, Toxoplasma and Leishmania.  相似文献   

8.
Wang Z  Wang X  Liu X 《EcoHealth》2008,5(2):115-126
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly significant infectious diseases occurring worldwide and caused by metacestodes of tapeworms Echinococcus granulosus and E. multilocularis, respectively. Both human CE and AE have highest prevalence rates in western and northwestern China. Livestock is the main intermediate host of E. granulosus, and wild small mammal are the main intermediate hosts of E. multilocularis. Since they range freely in pastoral areas, prey on wild small mammals and offal of livestock after slaughter, and have close relationships with humans, domestic dogs are the most important definitive host of both Echinococcus spp. with the highest risk of transmitting CE and AE to humans. Pastoralism is the occupation with the highest risk of being infected with the both kinds of echinococcosis due to the proximity of livestock, dogs, and wildlife host species. In this review, we summarize the epidemiology of human echinococcosis, the situation of parasite transmission in animal hosts, and possible transmission patterns in China. In addition, human activities and their potential influence on the transmission of echinococcosis are also discussed.  相似文献   

9.
To date, nothing is known about the genetic diversity of the Echinococcus neotropical species, Echinococcus vogeli and Echinococcus oligarthrus. Here we used mitochondrial and nuclear DNA sequence polymorphisms to uncover the genetic structure, transmission and history of E. vogeli in the Brazilian Amazon, based on a sample of 38 isolates obtained from human and wild animal hosts. We confirm that the parasite is partially synanthropic and show that its populations are diverse. Furthermore, significant geographical structuring is found, with western and eastern populations being genetically divergent.  相似文献   

10.
Experimental vaccine trials against hydatid disease have been undertaken in sheep using the EG95 recombinant vaccine. Challenge infection was with viable Echinococcus granulosus eggs obtained from a New Zealand isolate (dog/sheep cycle), an Australian isolate (dingo/wallaby cycle) and an Argentine isolate (dog/sheep cycle). Vaccination with EG95 conferred a high degree of protection against challenge with all three parasite isolates (protection range 96-100%). Taken together, the trials demonstrated that 86% of vaccinated sheep were completely free of viable hydatid cysts when examined approximately 1 year after challenge infection. Vaccination reduced the number of viable cysts by 99.3% compared with unvaccinated controls. These results suggest that the EG95 vaccine could have wide applicability as a new tool for use in hydatid control campaigns.  相似文献   

11.
Recently, the availability of protocols supporting genetic complementation of Eimeria has raised the prospect of generating transgenic parasite lines which can function as vaccine vectors, expressing and delivering heterologous proteins. Complementation with sequences encoding immunoprotective antigens from other Eimeria spp. offers an opportunity to reduce the complexity of species/strains in anticoccidial vaccines. Herein, we characterise and evaluate EtAMA1 and EtAMA2, two members of the apical membrane antigen (AMA) family of parasite surface proteins from Eimeria tenella. Both proteins are stage-regulated, and the sporozoite-specific EtAMA1 is effective at inducing partial protection against homologous challenge with E. tenella when used as a recombinant protein vaccine, whereas the merozoite-specific EtAMA2 is not. In order to test the ability of transgenic parasites to confer heterologous protection, E. tenella parasites were complemented with EmAMA1, the sporozoite-specific orthologue of EtAMA1 from E. maxima, coupled with different delivery signals to modify its trafficking and improve antigen exposure to the host immune system. Vaccination of chickens using these transgenic parasites conferred partial protection against E. maxima challenge, with levels of efficacy comparable to those obtained using recombinant protein or DNA vaccines. In the present work we provide evidence for the first known time of the ability of transgenic Eimeria to induce cross protection against different Eimeria spp. Genetically complemented Eimeria provide a powerful tool to streamline the complex multi-valent anticoccidial vaccine formulations that are currently available in the market by generating parasite lines expressing vaccine targets from multiple eimerian species.  相似文献   

12.
Investigations were undertaken into optimizing the expression of Cestode parasite vaccine antigens in the bacterium, Escherichia coli to levels sufficient for mass production. A strategy to genetically engineer the antigens and improve their expression in E. coli was investigated. Plasmid constructs encoding truncated parasite antigens were prepared, leading to removal of N and C-terminal hydrophobic domains of the antigens. This approach was found to be an effective strategy for improving expression of the TSOL18 recombinant antigen of Taenia solium in E. coli. Clear demonstration that plasmid construct modification can be used to significantly improve heterologous expression in E. coli was shown for the EG95 antigen of Echinococcus granulosus. Removal of hydrophobic stretches of amino acids from the N and C termini of EG95 by genetic manipulation led to a substantial change in expression of the protein from an insoluble to a soluble form. The data demonstrate that the occurrence of hydrophobic regions in the antigens are a major feature that hindered their expression in E. coli. It was also shown that retaining a minimal protein domain (a single fibronectin type III domain) led to high level expression of functional protein that is antigenic and host protective. Two truncated antigens were combined from two species of parasite (EG95NC from E. granulosus and Tm18N from Taenia multiceps) and expressed as a single hybrid antigen in E. coli. The hybrid antigens were expressed at a high level and retained antigenicity of their respective components, thereby simplifying production of a multi-antigen vaccine. The findings are expected to have an impact on the preparation of recombinant Cestode vaccine antigens using E. coli, by increasing their utility and making them more amenable to large-scale production.  相似文献   

13.
Leucocytozoon parasites infect many species of avian hosts, including domestic chicken, and can inflict heavy economic loss to the poultry industry. Although the prevalence and distribution of two Leucocytozoon species (L. sabrazesi and L. caulleryi) have been reported in China previously, there are many questions related to the parasite infection that remain unanswered, including population diversity and transmission dynamics in domestic chickens. Here we surveyed chicken blood samples from seven sites in four provinces of China to identify Leucocytozoon infection, characterized parasite diversity within individual infected hosts and between sampling sites, and investigated the dynamics of gametocytemia in chickens over time. We found high infection rates in three of the seven sites. Clustering parasite sequences of the mitochondrial cytochrome oxidase III (coxIII) and cytochrome b (cytb) genes showed lack of grouping according to geographic origins and individual hosts carrying large numbers of L. sabrazesi strains. Monitoring gametocytemia in blood samples from infected chickens over time showed ‘relapse’ or persistence of low-level gametocytemia for 4–5 months, which could be explored as an in vivo model for testing drugs against liver stages of Apicomplexan parasites. This study provides important information on population diversity and transmission dynamics of L. sabrazesi and for disease control.  相似文献   

14.
We examined 71 faecal samples of carnivores from Queen Elizabeth National Park (QENP), Uganda, for eggs of Echinococcus species. Thirty-nine faecal samples contained taeniid eggs. For species diagnosis, DNA was isolated from a total of 1984 individual taeniid eggs. To differentiate eggs of Echinococcus felidis from other taeniid taxa (including the closely related Echinococcus granulosus sensu stricto), a restriction fragment length polymorphism (RFLP)-PCR of the mitochondrial nad1 gene was developed. As the faecal samples were taken from the environment, the host species was determined for all samples, except for one, by RFLP-PCR of the cob gene. Seven hundred and ninety-one of the 1984 eggs yielded a suitable PCR product. E. felidis was present in 34 of 47 samples from lions, none of 18 samples from leopards, and one of five samples from spotted hyenas. No Echinococcus taxon other than E. felidis was found, but three samples from lions contained eggs of Taenia regis. Two hydatid cysts of warthog origin from QENP were available for this study; molecular examination showed that one belonged to E. felidis, the other to E. granulosus (G1 strain). As a comparison of methods demonstrated that molecular diagnostic tools used for previous surveys of Echinococcus isolates in eastern Africa are not suitable to discriminate between E. felidis and E. granulosus sensu stricto, we re-examined 412 hydatid cyst samples of human, sheep, cattle, camel and goat origin from Kenya. Previous results were confirmed, as E. granulosus sensu stricto and Echinococcus canadensis G6/7 strain, but no E. felidis was found among these samples. In conclusion, we provide evidence that E. felidis is a frequent parasite of lions in Uganda, and possibly also occurs in hyenas. Additionally, we show that warthogs interact as intermediate hosts for E. felidis. We did not find evidence that E. felidis is present in eastern Africa outside conservation areas.  相似文献   

15.
Human Alveolar Echinococcosis (HAE) is a potentially fatal parasitic disease caused by Echinococcus multilocularis, a cestode characterized by a sylvatic life-cycle involving several species of rodents and lagomorphs as intermediate hosts and canids as definitive hosts. Despite the wide distribution of the parasite in North America, the number of competent intermediate host species identified to date is still relatively small, and mainly includes the northern vole (Microtus oeconomus), brown lemming (Lemmus sibiricus), northern red-backed vole (Myodes rutilus), deer mouse (Peromyscus maniculatus) and meadow vole (Microtus pennsylvanicus).By monitoring the infections in rodents in the city of Calgary (Alberta, Canada), we have detected a case of severe alveolar echinococcosis in a southern red-backed vole (Myodes gapperi), a species never reported before as an intermediate host for this parasite. Observation of protoscolices in the intra-abdominal multilocular cysts indicates that M. gapperi could act as a competent intermediate host for the transmission of E. multilocularis.Since M. gapperi can be found in close proximity to, and within metropolitan areas, this species could play a role in the establishment and maintenance of the sylvatic life-cycle of E. multilocularis in urban landscapes, where the potential for zoonotic transmission is higher. The new intermediate host reported needs to be taken into account in future surveys and transmission models for this parasite.  相似文献   

16.
Species of Haemogregarina are apicomplexan blood parasites that use vertebrates as intermediate hosts. Due to limited interspecific morphological characters within the genus during the last decade, 18S rRNA gene sequences were widely used for species identification. As coinfection patterns were recently reported from nuclear molecular data for two sympatric freshwater turtles Mauremys leprosa and Emys orbicularis from Tunisia, our objectives were to design COI specific primers to confirm the presence of three distinct species in both host species. Blood samples were collected from 22 turtles, from which DNAs were extracted and used as templates for amplification. Following different rounds of PCR and nested PCR, we designed specific Haemogregarina COI primers that allowed the sequencing of nine distinct haplotypes. Phylogenetic Bayesian analysis revealed the occurrence of three well-differentiated sublineages that clustered together into a single clade. Based on pairwise genetic distances (p-distance), we confirmed the occurrence of three distinct but phylogenetically closely related species coinfecting M. leprosa and E. orbicularis in the same aquatic environments. Our results demonstrate that the use of fast evolving genes within Haemogregarina will help to investigate the parasite diversity within both intermediate vertebrate and definitive invertebrate hosts, and to assess the evolution, historical biogeography and specificity of haemogregarines.  相似文献   

17.
Much progress has been made with characterisation of the EG95 vaccine which can be used to prevent hydatid infection in animal intermediate hosts of Echinococcus granulosus. The vaccine comprises a single recombinant oncosphere antigen and the adjuvant Quil A. It induces complement-fixing antibodies that kill the invading oncosphere early in an infection. In the majority of vaccinated animals, no hydatid cysts occur following a challenge infection. However, a small number of viable cysts may occur in some vaccinated animals. The vaccine has proved effective in vaccine trials carried out in sheep in New Zealand, Australia, Argentina, Chile and China as well as in goats and cattle. Investigations of the genetic diversity of the gene encoding EG95 have identified no unequivocal variation within the G1 strain parasites; however DNA sequence diversity within the EG95 family of genes has been found in G6/G7 parasites. GMP production scale-up of the vaccine has been undertaken in New Zealand and China and it is expected that the vaccine will be become available through these sources for implementation as part of hydatid control programs worldwide.  相似文献   

18.
Various host characteristics (i. e., feeding habits, geographic distribution) and habitat characteristics (i.e., seasonality) influence the structure of parasite assemblages. To compare the parasite assemblages of hosts representatives of two genera of the same fish family, simultaneously occupying a geographic region, and to examine if seasonal variations influence parasite occurrence and abundance, we examined the parasite assemblages of two sympatric marine fish, Pagrus pagrus (n = 308) and Pagellus bogaraveo (n = 315) off the coast of Algeria in the western Mediterranean. Specimens were collected during summer and autumn over three consecutive years (2014–2016). Parasite assemblages were high in species richness and abundance. We compiled an inventory of 40 parasite taxa, including ectoparasitic monogeneans and crustaceans, and endoparasitic trematodes, cestodes, acanthocephalans, and nematodes. Endoparasite taxa primarily consisted of adult gastro-intestinal parasites and long lived larval helminths. Information on the parasite community structure and seasonal variations in parasite populations of these two hosts from the Mediterranean is here provided. Observed patterns of composition, diversity, dominance, and similarity indicate an overall consistency in assemblage structure. Although each host species harbored distinct parasite communities, they shared a high proportion of parasite species suggesting similar use of a common local pool of parasites. However, most shared species did not contribute to structuring the assemblages. Seasonal patterns in parasite abundance were observed for both hosts, with peak prevalence, abundance, and diversity in autumn. Results suggest that, regardless of a common pool of parasites being available to sympatric species, several ecological filters over time, led to distinct, independent variations in the parasite assemblages in each species.  相似文献   

19.

Background

Cystic echinococcosis (CE) is an important zoonotic disease caused by the cestode parasite Echinococcus granulosus. It occurs in many parts of the world where pastoral activities predominate, including the Rio Negro province of Argentina. Although CE control activities have been undertaken in the western regions of Rio Negro for more than two decades, the disease continues to remain prevalent in both the human and livestock animal populations. Vaccination of animal intermediate hosts of CE with the EG95 vaccine may provide a new opportunity to improve the effectiveness of CE control measures, although data are lacking about field application of the vaccine.

Aims

Evaluate the impact of EG95 vaccination in sheep on the transmission of Echinococcus granulosus in a field environment.

Methodology

Two trial sites were established in western Rio Negro province within indigenous communities. Vaccination of lambs born into one trial site was introduced and continued for 6 years. Prior to initiation of the trial, and at the end of the trial, the prevalence of CE in sheep was determined by necropsy. Weaned lambs received two injections of EG95 vaccine, approximately one month apart, and a single booster injection one year later. Vaccination was not implemented at the second trial site. A total of 2725 animals were vaccinated in the first year. Animals from this cohort as well as age-matched sheep from the control area were evaluated by necropsy.

Key results

Introduction of the vaccine led to a statistically significant in the number and size of hydatid cysts in comparison to the situation prior to the introduction of the vaccine, or compared to CE prevalence in the control area where the vaccine was not applied. The prevalence of infection in the vaccinated area was also significantly reduced by 62% compared to the re-intervention level, being lower than the prevalence seen in the control area, although the difference from the control area after the intervention was not significant possibly due to limitations in the numbers of animals available for necropsy.

Conclusions

Vaccination of sheep with the EG95 vaccine provides a valuable new tool which improves the effectiveness of CE control activities. Vaccination was effective even in a difficult, remote environment where only approximately half the lambs born into the communities were fully vaccinated.  相似文献   

20.
Intraspecific variability in parasite life cycle complexity (number of hosts and species of hosts in the life cycle) may have an impact how parasite genetic variation is partitioned among individual parasites, host individuals or host species within a given area. Among digenean trematodes, a three-host life cycle is common. However, a few species are precocious and may reach sexual maturity in what is typically regarded as the second intermediate host. The objective of this study was to determine whether a precocious life cycle predisposes digeneans to possible inbreeding or genetic subdivision among host species. As a study system, we used the digenean Proctoeces cf. lintoni whose metacercariae precociously mature (facultative) without a cyst wall in the gonads of multiple sympatric species of keyhole limpets (Fissurella spp.), typically regarded as the second intermediate hosts. Genotyped parasites were collected from four species of limpets and the clingfish Sicyases sanguineus, the third and final host where sexual maturity occurs. We found very high microsatellite diversity, Hardy–Weinberg equilibrium over all genotyped individuals, and little to no genetic structuring among parasites collected from the different host species. The fact that metacercariae do not encyst in the keyhole limpets, coupled with the high mixing potential of an aquatic environment, likely promote panmixia in local populations of P. cf. lintoni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号