首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We found that Acinetobacter baumannii contains a pgaABCD locus that encodes proteins that synthesize cell-associated poly-β-(1-6)-N-acetylglucosamine (PNAG). Both a mutant with an in-frame deletion of the pga locus (S1Δpga) and a transcomplemented strain (S1Δpga-c) of A. baumannii were constructed, and the PNAG production by these strains was compared using an immunoblot assay. Deleting the pga locus resulted in an A. baumannii strain without PNAG, and transcomplementation of the S1Δpga strain with the pgaABCD genes fully restored the wild-type PNAG phenotype. Heterologous expression of the A. baumannii pga locus in Escherichia coli led to synthesis of significant amounts of PNAG, while no polysaccharide was detected in E. coli cells harboring an empty vector. Nuclear magnetic resonance analysis of the extracellular polysaccharide material isolated from A. baumannii confirmed that it was PNAG, but notably only 60% of the glucosamine amino groups were acetylated. PCR analysis indicated that all 30 clinical A. baumannii isolates examined had the pga genes, and immunoblot assays indicated that 14 of the 30 strains strongly produced PNAG, 14 of the strains moderately to weakly produced PNAG, and 2 strains appeared to not produce PNAG. Deletion of the pga locus led to loss of the strong biofilm phenotype, which was restored by complementation. Confocal laser scanning microscopy studies combined with COMSTAT analysis demonstrated that the biovolume, mean thickness, and maximum thickness of 16-h and 48-h-old biofilms formed by wild-type and pga-complemented A. baumannii strains were significantly greater than the biovolume, mean thickness, and maximum thickness of 16-h and 48-h-old biofilms formed by the S1Δpga mutant strain. Biofilm-dependent production of PNAG could be an important virulence factor for this emerging pathogen that has few known virulence factors.Acinetobacter baumannii is a nonfermentative, gram-negative bacillus found in many health care environments and is a very effective colonizer of humans in hospitals. Resistance to many classes of antibiotics is common among Acinetobacter spp., and the recovery of multi-drug-resistant (MDR) and pan-drug-resistant A. baumannii strains has been on the rise in the last two decades (9). A. baumannii infections tend to occur in immunosuppressed patients, often in intensive care units, in patients with an underlying illness, and in patients subjected to invasive procedures (8). A. baumannii is an increasingly common cause of ventilator-associated pneumonia, bacteremia, meningitis, and urinary tract infections (2), as well as infections of skin and soft tissues, the central nervous system, and bone (37).Because of increasing interest in A. baumannii, progress is being made in identifying virulence determinants of this emerging pathogen, which to date include a novel pilus assembly system involved in biofilm formation (51), outer membrane protein Omp38 (4), a siderophore-mediated iron acquisition system, and an autoinducer synthase (34), among others. Analysis of the recently sequenced A. baumannii strain ATCC 17978 revealed the presence of 28 putative alien genetic islands, many of which carry genes predicted to be involved in virulence, including genes encoding drug resistance proteins, heavy metal resistance, type IV secretion systems, hemolysins/hemagglutinins, and cell wall biogenesis (47). Furthermore, using insertional mutagenesis, the virulence properties associated with six of these alien islands were confirmed in nonmammalian models of infection involving the worm Caenorhabditis elegans and the amoeba Dictyostelium discoideum (47).A. baumannii has the ability to colonize both abiotic and medical devices (51) and form biofilms which display decreased susceptibility to antibiotics (52, 53). Biofilms are complex matrices that contain proteins, ions, nucleic acids, and polysaccharide polymers (33, 43, 48, 56). One of the important polysaccharides is poly-β-(1-6)-N-acetylglucosamine (PNAG), which has been well described as a major component of biofilms of both Staphylococcus epidermidis (28) and Staphylococcus aureus (29). In addition to its role in surface and cell-to-cell adherence (5, 28), PNAG is an important virulence factor (27, 40, 44, 45) and protects bacteria against innate host defenses (24, 54). In staphylococci the icaADBC operon encodes the proteins involved in the synthesis of PNAG (5, 14). Recently, other functionally and genetically related loci that encode proteins synthesizing a similar or identical hexosamine-rich exopolysaccharide have been described in the genomes of several other gram-negative bacteria, including Escherichia coli, Yersinia pestis, Yersinia enterocolitica, Bordetella pertussis, Bordetella parapertussis, Bordetella bronchiseptica, Burkholderia cepacia, Pseudomonas fluorescens, Actinobacillus pleuropneumoniae, and Aggregatibacter actinomycetemcomitans (7, 20, 21, 25, 36, 55), and production of PNAG in E. coli (55), A. pleuropneumoniae (20), and A. actinomycetemcomitans (21) has been confirmed. In addition, a polysaccharide similar to PNAG, termed Bps, has been shown to be synthesized by Bordetella spp. both under in vitro conditions and in a murine model of bacterial infection (36, 46).A BLASTP search using E. coli pgaABCD and homologous loci of other gram-negative bacteria with the NCBI A. baumannii nonredundant protein database sequences enabled us to identify a four-gene locus that shares a high degree of similarly with various genetic loci encoding PNAG biosynthetic proteins. Genetic and biochemical studies described in this work demonstrated that the A. baumannii pgaABCD locus encodes proteins for the synthesis of PNAG in this organism and that these genes are present in 30 clinical isolates, most of which produce detectable PNAG polysaccharide.  相似文献   

2.
Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well (“static”) biofilms are available, there are no methods for such screening of continuous flow biofilms (“flow biofilms”). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.Bacterial biofilms are surface-attached communities that are encased in a polymeric matrix, which exhibit a high degree of resistance to antimicrobial agents and the host immune system (12, 16). This makes them medically important; diseases with a biofilm component are chronic and difficult to eradicate. Examples of such diseases are cystitis (1), endocarditis (31), cystic fibrosis (35), and middle-ear (17) and indwelling medical device-associated (20) infections. Biofilms also play important environmental roles in, for example, wastewater treatment (38), bioremediation (29, 30), biofouling (7), and biocorrosion (2). Better control of biofilms requires elucidation of the molecular basis of their superior resistance (by identifying resistance-compromised mutants) and identification of compounds with antibiofilm activity. While our understanding of these aspects of biofilms has increased (11, 15, 25-27, 36), further work, including development of accurate high-throughput (HTP) methods for screening biofilm viability, is needed.Two major biofilm models are studied in the laboratory, biofilms grown without a continuous flow of fresh medium and biofilms grown with a continuous flow of fresh medium; examples of these two models are microtiter well biofilms and flow cell biofilms, respectively. Methods have been developed for HTP screening of the viability of static biofilms (6, 28, 32, 33), but there are no methods for HTP screening of flow biofilms. The latter biofilms are typically grown in flow cells, which have to be examined individually to determine viability and thus cannot be used for rapid screening. An HTP screening method for flow biofilms is desirable, as these biofilms more closely approximate natural biofilms and can differ from static biofilms evidently due to hydrodynamic influences on cell signaling (22, 34). For example, the ability of rpoS-deficient Escherichia coli (lacking σS) to form flow biofilms is impaired, but its capacity to form biofilms under static conditions is enhanced (18).We describe here a new application of a recently developed device (8-10, 13), the “BioFlux” device consisting of microfluidic channels for biofilm growth. Other microfluidic devices have recently been used for biofilm formation (14, 19, 21, 23), but none of them has been used for HTP screening. The BioFlux device permits rapid measurement of the fluorescence of flow biofilms with a plate reader, which permits initial HTP screening of the viability of such biofilms.  相似文献   

3.
4.
5.
Most microbes, including the fungal pathogen Cryptococcus neoformans, can grow as biofilms. Biofilms confer upon microbes a range of characteristics, including an ability to colonize materials such as shunts and catheters and increased resistance to antibiotics. Here, we provide evidence that coating surfaces with a monoclonal antibody to glucuronoxylomannan, the major component of the fungal capsular polysaccharide, immobilizes cryptococcal cells to a surface support and, subsequently, promotes biofilm formation. We used time-lapse microscopy to visualize the growth of cryptococcal biofilms, generating the first movies of fungal biofilm growth. We show that when fungal cells are immobilized using surface-attached specific antibody to the capsule, the initial stages of biofilm formation are significantly faster than those on surfaces with no antibody coating or surfaces coated with unspecific monoclonal antibody. Time-lapse microscopy revealed that biofilm growth was a dynamic process in which cells shuffled position during budding and was accompanied by emergence of planktonic variant cells that left the attached biofilm community. The planktonic variant cells exhibited mobility, presumably by Brownian motion. Our results indicate that microbial immobilization by antibody capture hastens biofilm formation and suggest that antibody coating of medical devices with immunoglobulins must exclude binding to common pathogenic microbes and the possibility that this effect could be exploited in industrial microbiology.Cryptococcus neoformans is a fungal pathogen that is ubiquitous in the environment and enters the body via the inhalation of airborne particles. The C. neoformans cell is surrounded by a layer of polysaccharide that consists predominantly of glucuronoxylomannan (GXM), which forms a protective capsule around the microbe. The capsule has been shown to be essential for virulence in murine models of infection (5-7) and, thus, is considered a key virulence factor. C. neoformans is the causative agent of cryptococcosis, a disease that primarily affects individuals with impaired immune systems, and is a significant problem in AIDS patients (21, 31). The most common manifestation of cryptococcosis is meningoencephalitis.Biofilms are communities of microbes that are attached to surfaces and held together by an extracellular matrix, often consisting predominantly of polysaccharides (8, 10). A great deal is known about bacterial biofilms (3, 9, 24, 30), but fungal biofilm formation is much less studied. Candida albicans is known to synthesize biofilms (11, 28, 29), as is C. neoformans. Biofilm-like structures consisting of innumerable cryptococcal cells encased in a polysaccharide matrix have been reported in human cases of cryptococcosis (32). Biofilm formation confers upon the microbe the capacity for drug resistance, and microbial cells in biofilms are less susceptible to host defense mechanisms (2, 4, 9, 12). In this regard, cells within C. neoformans biofilms are significantly less susceptible to caspofungin and amphotericin B than are planktonic cells (19). The cells within the biofilm are also resistant to the actions of fluconazole and voriconazole and various microbial oxidants and peptides (17, 19).Bacterial and fungal biofilms form readily on prosthetic materials, which poses a tremendous risk of chronic infection (10, 13, 15, 27). C. neoformans biofilms can form on a range of surfaces, including glass, polystyrene, and polyvinyl, and material devices, such as catheters (16). C. neoformans can form biofilms on the ventriculoatrial shunts used to decompress intracerebral pressure in patients with cryptococcal meningoencephalitis (32).The polysaccharide capsule of C. neoformans is essential for biofilm formation (18), and biofilm formation involves the shedding and accumulation of large amounts of GXM into the biofilm extracellular matrix (16). Previously, we reported that antibody to GXM in solution could inhibit biofilm formation through a process that presumably involves interference with polysaccharide shedding (18, 20). However, the effect of antibody-mediated immobilization of C. neoformans cells on cryptococcal biofilm formation has not been explored. In this paper, we report that the monoclonal antibody (MAb) 18B7, which is specific for the capsular polysaccharide GXM, can capture and immobilize C. neoformans to surfaces, a process that promotes biofilm formation. Interestingly, we identified planktonic variant C. neoformans cells that appeared to escape from the biofilm, but whose functions are not known. The results provide new insights on biofilm formation.  相似文献   

6.
The biofilm matrix contributes to the chemistry, structure, and function of biofilms. Biofilm-derived membrane vesicles (MVs) and DNA, both matrix components, demonstrated concentration-, pH-, and cation-dependent interactions. Furthermore, MV-DNA association influenced MV surface properties. This bears consequences for the reactivity and availability for interaction of matrix polymers and other constituents.The biofilm matrix contributes to the chemistry, structure, and function of biofilms and is crucial for the development of fundamental biofilm properties (46, 47). Early studies defined polysaccharides as the matrix component, but proteins, lipids, and nucleic acids are all now acknowledged as important contributors (7, 15). Indeed, DNA has emerged as a vital participant, fulfilling structural and functional roles (1, 5, 6, 19, 31, 34, 36, 41, 43, 44). The phosphodiester bond of DNA renders this polyanionic at a physiological pH, undoubtedly contributing to interactions with cations, humic substances, fine-dispersed minerals, and matrix entities (25, 41, 49).In addition to particulates such as flagella and pili, membrane vesicles (MVs) are also found within the matrices of gram-negative and mixed biofilms (3, 16, 40). MVs are multifunctional bilayered structures that bleb from the outer membranes of gram-negative bacteria (reviewed in references 4, 24, 27, 28, and 30) and are chemically heterogeneous, combining the known chemistries of the biofilm matrix. Examination of biofilm samples by transmission electron microscopy (TEM) has suggested that matrix material interacts with MVs (Fig. (Fig.1).1). Since MVs produced in planktonic culture have associated DNA (11, 12, 13, 20, 21, 30, 39, 48), could biofilm-derived MVs incorporate DNA (1, 39, 40, 44)?Open in a separate windowFIG. 1.Possible interactions between matrix polymers and particulate structures. Shown is an electron micrograph of a thin section through a P. aeruginosa PAO1 biofilm. During processing, some dehydration occurred, resulting in collapse of matrix material into fibrillate arrangements (black filled arrows). There is a suggestion of interactions occurring with particulate structures such as MVs (hollow white arrow) and flagella (filled white arrows) (identified by the appearance and cross-dimension of these highly ordered structures when viewed at high magnification), which was consistently observed with other embedded samples and also with whole-mount preparations of gently disrupted biofilms (data not shown). The scale bar represents 200 nm.  相似文献   

7.
8.
Biofilms are considered to be highly resistant to antimicrobial agents. Several mechanisms have been proposed to explain this high resistance of biofilms, including restricted penetration of antimicrobial agents into biofilms, slow growth owing to nutrient limitation, expression of genes involved in the general stress response, and emergence of a biofilm-specific phenotype. However, since combinations of these factors are involved in most biofilm studies, it is still difficult to fully understand the mechanisms of biofilm resistance to antibiotics. In this study, the antibiotic susceptibility of Escherichia coli cells in biofilms was investigated with exclusion of the effects of the restricted penetration of antimicrobial agents into biofilms and the slow growth owing to nutrient limitation. Three different antibiotics, ampicillin (100 μg/ml), kanamycin (25 μg/ml), and ofloxacin (10 μg/ml), were applied directly to cells in the deeper layers of mature biofilms that developed in flow cells after removal of the surface layers of the biofilms. The results of the antibiotic treatment analyses revealed that ofloxacin and kanamycin were effective against biofilm cells, whereas ampicillin did not kill the cells, resulting in regrowth of the biofilm after the ampicillin treatment was discontinued. LIVE/DEAD staining revealed that a small fraction of resistant cells emerged in the deeper layers of the mature biofilms and that these cells were still alive even after 24 h of ampicillin treatment. Furthermore, to determine which genes in the biofilm cells are induced, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. The results showed that significant changes in gene expression occurred during biofilm formation, which were partly induced by rpoS expression. Based on the experimental data, it is likely that the observed resistance of biofilms can be attributed to formation of ampicillin-resistant subpopulations in the deeper layers of mature biofilms but not in young colony biofilms and that the production and resistance of the subpopulations were aided by biofilm-specific phenotypes, like slow growth and induction of rpoS-mediated stress responses.Reduced susceptibility of biofilm bacteria to antimicrobial agents is a crucial problem for treatment of chronic infections (11, 29, 48). It has been estimated that 65% of microbial infections are associated with biofilms (11, 29, 37), and biofilm cells are 100 to 1,000 times more resistant to antimicrobial agents than planktonic bacterial cells (11, 29, 32).The molecular nature of this apparent resistance has not been elucidated well, and a number of mechanisms have been proposed to explain the reduced susceptibility, such as restricted antibiotic penetration (47), decreased growth rates and metabolism (7, 52), quorum sensing and induction of a biofilm-specific phenotype (8, 29, 35, 39, 49), stress response activation (7, 52), and an increase in expression of efflux pumps (14). Biofilm resistance has generally been assumed to be due to the fact that the cells in the deeper layers of thick biofilms, which grow more slowly, have less access to antibiotics and nutrients. However, this is not the only reason in many cases. Familiar mechanisms of antibiotic resistance, such as modifying enzymes and target mutations, do not seem to be responsible for the biofilm resistance. Even sensitive bacteria that do not have a known genetic basis for resistance can exhibit profoundly reduced susceptibility when they form biofilms (48).It was reported previously that changes in gene expression induced a biofilm-specific phenotype (5, 13, 22, 35, 41, 42). Several genes have been proposed to be particularly important for biofilm formation, and the importance of the rpoS gene in Escherichia coli biofilm formation was suggested recently (1, 10, 22, 42). It has been suggested that induction of an rpoS-mediated stress response results in physiological changes that could contribute to antibiotic resistance (29). Although several mechanisms and genes have been proposed to explain biofilm resistance to antibiotics, this resistance is not still fully understood because these mechanisms seem to work together within a biofilm community. In addition, the physiology of biofilm cells is remarkably heterogeneous and varies according to the location of individual cells within biofilms (33, 34, 46).In this study, susceptibility of E. coli cells in biofilms to antibiotics was investigated. The E. coli cells in the deeper layers of mature biofilms were directly treated with three antibiotics with different molecular targets, the β-lactam ampicillin, the aminoglycoside kanamycin, and the fluoroquinolone ofloxacin. The biofilm biomass was removed before antibiotic treatment, and only the cells located in the deeper layers of the mature biofilms were directly exposed to antibiotics; thus, the effects of restricted antibiotic and nutrient penetration, as well as heterogeneous physiological states in biofilms, were reduced. Although ofloxacin and kanamycin effectively killed the biofilm cells, ampicillin could not kill the cells, which led to regrowth of biofilms. However, the cells in young colony biofilms were completely killed by ampicillin. Therefore, to determine which genes are induced in the mature biofilm cells, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. Based on the experimental data obtained, possible mechanisms of the increased biofilm resistance to ampicillin are discussed below.  相似文献   

9.
10.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

11.
The stochastic Ricker population model was used to investigate the generation and maintenance of genetic diversity in a bacterial population grown in a spatially structured environment. In particular, we showed that Escherichia coli undergoes dramatic genetic diversification when grown as a biofilm. Using a novel biofilm entrapment method, we retrieved 64 clones from each of six different depths of a mature biofilm, and after subculturing for ∼30 generations, we measured their growth kinetics in three different media. We fit a stochastic Ricker population growth model to the recorded growth curves. The growth kinetics of clonal lineages descendant from cells sampled at different biofilm depths varied as a function of both the depth in the biofilm and the growth medium used. We concluded that differences in the growth dynamics of clones were heritable and arose during adaptive evolution under local conditions in a spatially heterogeneous environment. We postulate that under nutrient-limited conditions, selective sweeps would be protracted and would be insufficient to purge less-fit variants, a phenomenon that would allow the coexistence of genetically distinct clones. These findings contribute to the current understanding of biofilm ecology and complement current hypotheses for the maintenance and generation of microbial diversity in spatially structured environments.The mechanisms that lead to the genesis and maintenance of diversity in communities have intrigued geneticists and ecologists alike for decades (6, 17, 27, 33, 39, 49). This is particularly challenging for microbial communities, in which ecological and evolutionary processes occur on roughly the same time scale (3, 16, 38) and where the outcome of these processes may be affected by the spatial structure in which these communities grow.Bacterial biofilms are examples of spatially structured communities that have been the subject of intense research in medical and engineering contexts in recent years (3, 8, 20, 48, 56). Previous work has shown that the phenotypic characteristics of bacterial populations in biofilms are distinct from those of their free-swimming counterparts (8). These bacterial assemblages form physically and chemically heterogeneous structures (20) whose complex architecture strongly influences mass transfer (56). This results in the formation of steep gradients of nutrients, waste products, pH, redox potential, and electron acceptors, which results in the creation of distinct and perhaps unique niches on a microscale. This places selective pressure on variants that have enhanced fitness and are well adapted to local conditions. From a theoretical perspective, this would be expected to increase genetic diversity within a population by precluding competitive exclusion, yet this has not previously been demonstrated empirically.The degree of diversification that occurs within populations growing in biofilms is not well understood, nor are the spatial and temporal dynamics of bacterial species succession in biofilms. However, it is known that the physical and chemical heterogeneity of microbial biofilms has profound effects on microbial growth and activity. Most bacterial cells in biofilms are not highly active and grow slowly if at all. For example, active protein synthesis occurs only in the uppermost zone (32 ± 3 μm) of Pseudomonas aeruginosa biofilms (4). Likewise, in Klebsiella pneumoniae biofilms, fast growth occurs near the interface of the biofilm and bulk fluid, and cells inside the biofilm show little growth (55). The near absence of growth in interior regions of biofilms may lead to an increased tempo of diversification, since numerous studies have shown that mutation frequencies are elevated in slowly growing cells (28). If this occurs within a biofilm, then clones might exhibit a high genotypic variability that could have significant practical implications in terms of yielding spontaneous mutants that are resistant to antimicrobial agents.Experimental evolution has contributed greatly to our understanding of the causes and consequences of genetic diversity in populations (reviewed in references 23, 29, and 42). Initially, research focused on characterizing diversity within populations that evolved in spatially homogenous environments (e.g., chemostat and batch systems) (13, 15, 19, 30-32, 45, 47, 50-53). Several studies have highlighted a role for spatial heterogeneity in the emergence and maintenance of genetic diversity (25, 26, 43). Korona and colleagues (25, 26) compared populations that evolved in batch cultures to populations that evolved with a spatial structure and demonstrated that phenotypic diversity was greatest with spatial structure. In other work, Rainey and Travisano (43) showed that populations of Pseudomonas grown in static broth microcosms diversified so that some ecotypes occupied a floating biofilm on the surface of the broth while others occupied the liquid phase or glass surface of the culture. Boles et al. (2, 3) investigated the extent of diversification of Pseudomonas using biofilms that evolved in flow-cell systems. They reported that genetic changes produced by a recA-dependent mechanism affected multiple traits, with some biofilm-derived variants being better able to disseminate while others were better able to form biofilms (3). Further study showed that in some cells, endogenous oxidative stress caused double-stranded DNA breaks that when repaired by recombinatorial DNA repair genes gave rise to mutations (2). These previous studies demonstrate the pivotal role of spatial structure in the generation and maintenance of diversity in evolving bacterial populations.In this study, we extended this work by using novel techniques to characterize diversity in Escherichia coli biofilms that allowed us to recover clones from specific depths within a biofilm. The growth kinetics of clones from six different biofilm depths were measured and modeled using an analysis-of-variance formulation of the stochastic Ricker model of population dynamics with environmental noise (11, 40). Rigorous statistical methods were used to show that after 1 month of cultivation, the extant diversity in E. coli biofilms was extraordinarily high and varied with depth.  相似文献   

12.
The majority of Listeria monocytogenes isolates recovered from foods and the environment are strains of serogroup 1/2, especially serotypes 1/2a and 1/2b. However, serotype 4b strains cause the majority of human listeriosis outbreaks. Our investigation of L. monocytogenes biofilms used a simulated food-processing system that consisted of repeated cycles of growth, sanitation treatment, and starvation to determine the competitive fitness of strains of serotypes 1/2a and 4b in pure and mixed-culture biofilms. Selective enumeration of strains of a certain serotype in mixed-culture biofilms on stainless steel coupons was accomplished by using serotype-specific quantitative PCR and propidium monoazide treatment to prevent amplification of extracellular DNA or DNA from dead cells. The results showed that the serotype 1/2a strains tested were generally more efficient at forming biofilms and predominated in the mixed-culture biofilms. The growth and survival of strains of one serotype were not inhibited by strains of the other serotype in mixed-culture biofilms. However, we found that a cocktail of serotype 4b strains survived and grew significantly better in mixed-culture biofilms containing a specific strain of serotype 1/2a (strain SK1387), with final cell densities averaging 0.5 log10 CFU/cm2 higher than without the serotype 1/2a strain. The methodology used in this study contributed to our understanding of how environmental stresses and microbial competition influence the survival and growth of L. monocytogenes in pure and mixed-culture biofilms.A prominent food-borne pathogen, Listeria monocytogenes can cause severe infections in humans, primarily in high-risk populations, though the disease (listeriosis) is relatively rare (11, 30, 43). Outbreaks of listeriosis have resulted from the contamination of a variety of foods by L. monocytogenes, especially meat and dairy products (27). L. monocytogenes is ubiquitous in the environment, able to grow at refrigeration temperature, and tolerant of the low pHs (3 to 4) typical of acidified foods (28, 32, 44). The capacity to produce biofilms confers protection against stresses common in the food-processing environment (13, 33).Biofilms are characterized by dense clusters of bacterial cells embedded in extracellular polymeric substances which are secreted by cells to aid in adhesion to surfaces and to other cells (4, 5). Strains of L. monocytogenes have been known to persist for years in food-processing environments, presumably in biofilms. Of the 13 known serotypes of L. monocytogenes, three (1/2a, 1/2b, and 4b) account for >95% of the isolates from human illness (21). Serotype 1/2a accounts for >50% of the L. monocytogenes isolates recovered from foods and the environment, while most major outbreaks of human listeriosis have been caused by serotype 4b strains (1, 3, 14, 15, 17, 22, 29, 31, 41, 47, 49,). No correlation between L. monocytogenes strain fitness and serotype has been identified (16, 19). Some studies have reported that strains repeatedly isolated from food and environmental samples (defined as persistent strains) had a higher adherence capacity than strains that were sporadically isolated (2, 36), while this phenomenon was not observed by others (7). Serotype 4b strains exhibited a higher capacity for biofilm formation than did serotype 1/2a strains (36), whereas this was not observed by Di Bonaventura and colleagues (6). It has been suggested that serotype 1/2a strains could be more robust than serotype 4b strains in biofilm formation under a variety of environmental conditions. Furthermore, strains of these serotypes differ in terms of the medium that promotes biofilm formation. Biofilm formation by serotype 4b strains was higher in full-strength tryptic soy broth than in diluted medium, whereas the opposite was observed with serotype 1/2a strains, which produced more biofilm in diluted medium (12).There is limited information on microbial competition between strains of different serotypes in biofilms or on how the environmental stresses present in food-processing environments may affect the biofilm formation and survival of L. monocytogenes of different serotypes. In food-processing plants, the environmental stresses encountered by bacteria are more complex and variable than most laboratory systems used for microbial ecology and biofilm studies. A simulated food-processing (SFP) system has been developed to address this issue (38). The SFP system incorporates several stresses that may affect bacteria in biofilms in the food-processing environment, including exposure to sanitizing agents, dehydration, and starvation. When biofilms were subjected to the SFP regimen over a period of several weeks, the cell numbers of L. monocytogenes strains in the biofilms initially were reduced and then increased as the culture adapted (38). The development of resistance to sanitizing agents was specific to the biofilm-associated cells and was not apparent in the detached cells (38). This suggested that extracellular polymeric substances present in the biofilm matrix were responsible for the resistance to sanitizing agents. It was subsequently found that real-time PCR, in combination with propidium monoazide (PMA) treatment of samples prior to DNA isolation, was an effective method for enumerating viable cells in biofilms (37).The objective of this study was to determine if strains of serotype 1/2a or 4b have a selective advantage under stress conditions. We investigated and compared the initial attachment and biofilm formation capabilities of L. monocytogenes strains of these two serotypes and analyzed the survival and growth of bacteria of each serotype in mixed-serotype biofilms in the SFP system by using PMA with quantitative PCR.  相似文献   

13.
The asymptomatic, chronic carrier state of Salmonella enterica serovar Typhi occurs in the bile-rich gallbladder and is frequently associated with the presence of cholesterol gallstones. We have previously demonstrated that salmonellae form biofilms on human gallstones and cholesterol-coated surfaces in vitro and that bile-induced biofilm formation on cholesterol gallstones promotes gallbladder colonization and maintenance of the carrier state. Random transposon mutants of S. enterica serovar Typhimurium were screened for impaired adherence to and biofilm formation on cholesterol-coated Eppendorf tubes but not on glass and plastic surfaces. We identified 49 mutants with this phenotype. The results indicate that genes involved in flagellum biosynthesis and structure primarily mediated attachment to cholesterol. Subsequent analysis suggested that the presence of the flagellar filament enhanced binding and biofilm formation in the presence of bile, while flagellar motility and expression of type 1 fimbriae were unimportant. Purified Salmonella flagellar proteins used in a modified enzyme-linked immunosorbent assay (ELISA) showed that FliC was the critical subunit mediating binding to cholesterol. These studies provide a better understanding of early events during biofilm development, specifically how salmonellae bind to cholesterol, and suggest a target for therapies that may alleviate biofilm formation on cholesterol gallstones and the chronic carrier state.The serovars of Salmonella enterica are diverse, infect a broad array of hosts, and cause significant morbidity and mortality in impoverished and industrialized nations worldwide. S. enterica serovar Typhi is the etiologic agent of typhoid fever, a severe illness characterized by sustained bacteremia and a delayed onset of symptoms that afflicts approximately 20 million people each year (14, 19). Serovar Typhi can establish a chronic infection of the human gallbladder, suggesting that this bacterium utilizes novel mechanisms to mediate enhanced colonization and persistence in a bile-rich environment.There is a strong correlation between gallbladder abnormalities, particularly gallstones, and development of the asymptomatic Salmonella carrier state (47). Antibiotic regimens are typically ineffective in carriers with gallstones (47), and these patients have an 8.47-fold-higher risk of developing hepatobiliary carcinomas (28, 46, 91). Elimination of chronic infections usually requires gallbladder removal (47), but surgical intervention is cost-prohibitive in developing countries where serovar Typhi is prevalent. Thus, understanding the progression of infection to the carrier state and developing alternative treatment options are of critical importance to human health.The formation of biofilms on gallstones has been hypothesized to facilitate enhanced colonization of and persistence in the gallbladder. Over the past 2 decades, bacterial biofilms have been increasingly implicated as burdens for food and public safety worldwide, and they are broadly defined as heterogeneous communities of microorganisms that adhere to each other and to inert or live surfaces (17, 22, 67, 89, 102). A sessile environment provides selective advantages in natural, medical, and industrial ecosystems for diverse species of commensal and pathogenic bacteria, including Streptococcus mutans (40, 92, 104), Staphylococcus aureus (15, 35, 100), Escherichia coli (21, 74), Vibrio cholerae (39, 52, 107), and Pseudomonas aeruginosa (23, 58, 73, 105). Bacterial biofilms are increasingly associated with many chronic infections in humans and exhibit heightened resistance to commonly administered antibiotics and to engulfment by professional phagocytes (54, 55, 59). The bacterial gene expression profiles for planktonic and biofilm phenotypes differ (42, 90), and the changes are likely regulated by external stimuli, including nutrient availability, the presence of antimicrobials, and the composition of the binding substrate.Biofilm formation occurs in sequential, highly ordered stages and begins with attachment of free-swimming, planktonic bacteria to a surface. Subsequent biofilm maturation is characterized by the production of a self-initiated extracellular matrix (ECM) composed of nucleic acid, proteins, or exopolysaccharides (EPS) that encase the community of microorganisms. Planktonic cells are continuously shed from the sessile, matrix-bound population, which can result in reattachment and fortification of the biofilm or systemic infection and release of the organism into the environment. Shedding of serovar Typhi by asymptomatic carriers can contaminate food and water and account for much of the person-to-person transmission in underdeveloped countries.Our laboratory has previously reported that bile is required for formation of mature biofilms with characteristic EPS production by S. enterica serovars Typhimurium, Enteritidis, and Typhi on human gallstones and cholesterol-coated Eppendorf tubes (18, 78). Cholesterol is the primary constituent of human cholesterol gallstones, and use of cholesterol-coated tubes creates an in vitro uniform surface that mimics human gallstones (18). It was also demonstrated that Salmonella biofilms that formed on different surfaces had unique phenotypes and required expression of specific EPS (18, 77), yet the factors mediating Salmonella binding to gallstones and cholesterol-coated surfaces during the initiation of biofilm formation remain unknown. Here, we show that the presence of serovar Typhimurium flagella promotes binding specifically to cholesterol in the early stages of biofilm development and that the FliC subunit is a critical component. Bound salmonellae expressing intact flagella provided a scaffold for other cells to bind to during later stages of biofilm growth. Elucidation of key mechanisms that mediate adherence to cholesterol during Salmonella bile-induced biofilm formation on gallstone surfaces promises to reveal novel drug targets for alleviating biofilm formation in chronic cases.  相似文献   

14.
The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.Staphylococcus aureus is a gram-positive bacterium that lives as part of the normal microflora on the skin and mucous membranes of humans and animals. If S. aureus passes through the epithelial barrier and reaches internal organs, it can cause a variety of diseases, ranging from minor skin infections, such as furuncles or boils, to severe infections, such as bacteremia, pneumonia, osteomyelitis, or endocarditis. Despite the progress with antibiotics in the treatment of bacterial infections over the last 2 decades, the number of infections due to S. aureus has increased (11, 30). The infection rate has been correlated with an increase in the use of prosthetic and indwelling devices in modern medical practices (24, 26). S. aureus, as well as other coagulase-negative staphylococci, displays a strong capacity to irreversibly attach to the surface of implanted medical devices and forms multilayered communities of bacteria, known as biofilms, that grow embedded in a self-produced extracellular matrix (23). The biofilm formation process occurs in two steps: first, bacterial cells irreversibly attach to a surface, and second, they interact with each other and accumulate in multilayered cell clusters embedded in a self-produced extracellular matrix. Primary attachment is mediated by physico-chemical cell surface properties as well as specific factors that mediate the attachment to the host-derived extracellular matrix components that rapidly coat the biomaterial following insertion into the patient. Numerous proteins from the MSCRAMMs family (microbial surface components recognizing adhesive matrix molecules) are involved in the first step of S. aureus biofilm formation, such as clumping factors ClfA (37) and ClfB (41) and fibrinogen and fibronectin binding proteins (FnBPA and FnBPB) (25, 31). Once bacteria accumulate in multilayered cell clusters, most have no direct contact with the surface, and thus cell-to-cell interactions become essential for biofilm development and maintenance. An extracellular polysaccharide intercellular adhesin (PIA, or PNAG), produced by icaADBC operon-encoded enzymes, is currently the best-characterized element mediating intercellular interactions in vitro (8, 23, 34, 35, 38). Alternatively, a number of surface proteins can replace PIA/PNAG exopolysaccharide in promoting intercellular adhesion and biofilm development, including the surface protein Bap (9). All the tested staphylococcal isolates harboring the bap gene were shown to be strong biofilm producers, and inactivation of the icaADBC operon in bap-positive strains had no effect on in vitro biofilm formation (57). Remarkably, proteins homologous to Bap are involved in the biofilm formation process in diverse bacterial species (33). A second surface protein, SasG, as well as its homologous protein in Staphylococcus epidermidis, Aap, also mediates intercellular interactions and biofilm development in the absence of the ica operon (7, 51). More recently, two independent laboratories have shown that fibronectin binding proteins A and B (FnBPA and FnBPB) induce biofilm development of clinical isolates of S. aureus (45, 55). Finally, there is growing evidence that extracellular DNA, despite not being sufficient to replace PIA/PNAG exopolysaccharide, is an important S. aureus biofilm matrix component (50).During the course of a systematic mutagenesis study of the 17 two-component systems of S. aureus that aimed to identify biofilm-negative regulators, we found that S. aureus agr arlRS double mutants developed an alternative, ica-independent biofilm in a chemically defined medium, Hussain-Hastings-White (HHW) medium (56). This study focused on the identification of the proteinaceous compound responsible for the biofilm developed by S. aureus agr arlRS mutants. Here, we show that S. aureus protein A is responsible for the aggregative phenotype and capacity for biofilm formation displayed by this strain. Furthermore, overproduction of protein A in wild-type S. aureus strains or addition of soluble protein A to bacterial growth medium induced aggregation and biofilm development, suggesting that protein A does not need to be covalently linked to the cell wall to promote multicellular behavior. Moreover, deletion of the spa gene significantly decreased the capacity of S. aureus to colonize subcutaneously implanted catheters. Our findings support a novel role for protein A in promoting multicellular behavior and suggest that protein A-mediated biofilm development may have a critical function during the infection process of S. aureus.  相似文献   

15.
Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims (10), patients with traumatic wounds (33), people with diabetes (27), and patients with surgical wounds (29, 31). Two of the more common causative agents of wound infections are Staphylococcus aureus and Pseudomonas aeruginosa (10, 27, 29, 31, 33). Such infections often lead to fatality; the mortality rate among patients infected with P. aeruginosa ranges from 26% to 55% (9, 49), while mortality from S. aureus infection ranges from 19% to 38% (28, 46, 50). As opportunistic pathogens, S. aureus and P. aeruginosa cause few infections in healthy individuals but readily cause infection once host defenses are compromised, such as with the removal of skin from burns (10). S. aureus infection originates from the normal flora of either the patient or health care workers (48), while P. aeruginosa is acquired from the environment surrounding the patient (41). Once established on the skin, S. aureus and P. aeruginosa are then able to colonize the wound. Infection results if the organisms proliferate in the wound environment.Both P. aeruginosa and S. aureus often exist within burn wounds as biofilms (43, 47). A biofilm is presently defined as a sessile microbial community characterized by cells that are irreversibly attached either to a substratum or to each other (16). Biofilms, which can attain over 100 μm in thickness, are made up of multiple layers of bacteria in an exopolysaccharide matrix (12, 16, 42). Sauer et al. showed that P. aeruginosa biofilms form in distinct developmental stages: reversible attachment, irreversible attachment, two stages of maturation, and a dispersion phase (42). Clinically, biofilms present serious medical management problems through their association with different chronic infections (37). During vascular catheter-related infections and sepsis, biofilms serve as a reservoir of bacteria from which planktonic cells detach and spread throughout the tissue and/or enter the circulatory system, resulting in bacteremia or septicemia (15). Factors specific to the bacterium may influence the formation of bacterial biofilms at different infection sites or surfaces. For example, during the initial attachment stage the flagellum, lipopolysaccharide, and possibly outer membrane proteins play a major role in bringing P. aeruginosa into proximity with the surface as well as mediating the interaction with the substratum (12). Using the murine model of thermal injury, we recently showed that P. aeruginosa forms a biofilm within the thermally injured tissues (43). Clinically, the surgeons debride the infected or dead tissues; however, a few microorganisms may remain on the tissue surface and reinitiate biofilm formation.Antibiotics, silver, or chitosan, attached to or embedded in gauze, have been shown to be efficacious in preventing wound infection (21, 24, 26, 36). However, the resistance of P. aeruginosa and S. aureus to available antibiotics severely limits the choices for antibiotic treatment (13, 40). Additionally, silver compounds, such as silver nitrate and silver sulfadiazine, leaching from dressings are toxic to human fibroblasts even at low concentrations (20, 25). Thus, effective alternative antimicrobial agents that contact the thermally injured/infected tissues and prevent the development of bacterial biofilms are required. Previous studies have shown that selenium (Se) can be covalently bound to a solid matrix and retain its ability to catalyze the formation of superoxide radicals (O2·−) (30). These superoxide radicals inhibit bacterial attachment to the solid surface (30). In this study, we examined the ability of a newly synthesized organoselenium-methacrylate polymer (Se-MAP) to block biofilm formation by both S. aureus and P. aeruginosa. These bacteria were chosen since they cause a major share of wound infections and because drug-resistant forms of these bacteria have become a serious problem in the treatment and management of these wound infections (6, 13, 17, 18, 38). Results of the study show that 0.2% (wt/wt) Se in Se-MAP covalently attached to cellulose discs inhibited P. aeruginosa and S. aureus biofilm formation. This could lead to the development of a selenium-based antimicrobial coating for cotton materials that will prevent the bacterial attachment and colonization that can ultimately lead to bacterial biofilm formation during chronic infections.  相似文献   

16.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

17.
Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.Oral diseases related to dental biofilms afflict the majority of the world''s population, and dental caries is still the single most prevalent and costly oral infectious disease (12, 32). Dental caries results from the interaction of specific bacteria with constituents of the diet within a biofilm formed on the tooth surface known as plaque (5, 36). Streptococcus mutans is a key contributor to the formation of biofilms associated with dental caries disease, although other microorganisms may also be involved (3); S. mutans (i) effectively utilizes dietary sucrose (and possibly starch) to rapidly synthesize exopolysaccharides (EPS) using glucosyltransferases and a fructosyltransferase that adsorb to surfaces, (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is acidogenic and acid tolerant (5, 30).In general, biofilms develop after initial attachment of microbes to a surface, followed by formation of highly structured cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which are in a complex extracellular matrix (6, 49). The majority of biofilm matrices contain exopolysaccharides, and dental biofilms are no exception; up to 40% of the dry weight of dental plaque is composed of polysaccharides (depending on the type of carbohydrate consumption and the time of plaque collection), which are mostly glucans synthesized by microbial glucosyltransferases (Gtfs) (for a review, see reference 36). S. mutans plays a major role in the development and establishment of the EPS matrix in dental biofilms. This bacterium produces at least three Gtfs, which are products of the gtfB, gtfC, and gtfD genes; GtfB synthesizes mostly insoluble glucans containing elevated amounts of α-1,3-linked glucose, GtfC synthesizes a mixture of insoluble and soluble glucans (rich in α-1,6-linked glucose), and GtfD synthesizes predominantly soluble glucans (for reviews, see references 30 and 36). The Gtfs secreted by S. mutans bind avidly to the pellicle formed on the tooth surface and to bacterial surfaces and are enzymatically active; when they are exposed to sucrose, glucans are formed in situ within minutes (17, 33, 38, 40, 46). It is noteworthy that most nonstreptococcal oral bacteria (e.g., Actinomyces and Veillonella spp.) do not produce glucans unless Gtfs are adsorbed on their surfaces (33, 46). The glucans synthesized in situ provide binding sites for colonization and accumulation of S. mutans on the apatitic surface and for binding to each other through interactions with several membrane-associated glucan-binding proteins and surface glucans (8, 39, 47). The exopolymers also contribute to the bulk and physical integrity and stability of the biofilm matrix (for a review, see reference 36). The glucan-mediated processes promote tight adherence and coherence of bacterial cells bound to each other and to the apatitic surface, which leads to the formation of microcolonies by S. mutans and thereby modulates the initial steps of cariogenic biofilm development.When dietary sucrose is consumed frequently, S. mutans, as a member of the oral biofilm community, continues to synthesize polysaccharides and metabolize this sugar to form organic acids. The elevated amounts of EPS, which may involve upregulation of gtf genes in response to pH and carbohydrate availability (29), increase the virulence of the biofilms (42, 51). In addition, the ability of S. mutans to utilize some extra- and intracellular polysaccharides as short-term storage compounds provides an additional ecological benefit and simultaneously increases the amount of acid produced and the extent of acidification within the biofilm (5, 7). The persistence of this aciduric environment leads to selection and dominance of highly acid-tolerant (and acidogenic) organisms, such as S. mutans (32, 37); the low-pH environment in the biofilm matrix results in dissolution of enamel, thus initiating the pathogenesis of dental caries (32, 36).Recently, we have shown that EPS produced by S. mutans Gtfs modulate the initial formation, sequence of assembly, and structural organization of microcolonies by this bacterium on apatitic surfaces (50). However, it was unclear which of the Gtf enzymes were associated with these processes. Furthermore, the polysaccharides may also modulate the formation of microcolonies by complex ecological interactions in a multispecies system. In this study, we investigated (i) the role of each of the S. mutans gtf genes in EPS matrix and microcolony development on a saliva-coated hydroxyapatite (sHA) surface and (ii) the influence of exopolysaccharides on establishment of microcolonies at distinct developmental phases during formation of biofilms by S. mutans in the presence of Streptococcus oralis and Actinomyces naeslundii.(This study was presented at 5th ASM Conference on Biofilms, Cancun, Mexico, 15 to 19 November 2009.)  相似文献   

18.
19.
20.
Coaggregation is hypothesized to enhance freshwater biofilm development. To investigate this hypothesis, the ability of the coaggregating bacterium Sphingomonas natatoria to form single- and dual-species biofilms was studied and compared to that of a naturally occurring spontaneous coaggregation-deficient variant. Attachment assays using metabolically inactive cells were performed using epifluorescence and confocal laser scanning microscopy. Under static and flowing conditions, coaggregating S. natatoria 2.1gfp cells adhered to glass surfaces to form diaphanous single-species biofilms. When glass surfaces were precoated with coaggregation partner Micrococcus luteus 2.13 cells, S. natatoria 2.1gfp cells formed densely packed dual-species biofilms. The addition of 80 mM galactosamine, which reverses coaggregation, mildly reduced adhesion to glass but inhibited the interaction and attachment to glass-surface-attached M. luteus 2.13 cells. As opposed to wild-type coaggregating cells, coaggregation-deficient S. natatoria 2.1COGgfp variant cells were retarded in colonizing glass and did not interact with glass-surface-attached M. luteus 2.13 cells. To determine if coaggregation enhances biofilm growth and expansion, viable coaggregating S. natatoria 2.1gfp cells or the coaggregation-deficient variant S. natatoria 2.1COGgfp cells were coinoculated in flow cells with viable M. luteus 2.13 cells and allowed to grow together for 96 h. Coaggregating S. natatoria 2.1gfp cells outcompeted M. luteus 2.13 cells, and 96-h biofilms were composed predominantly of S. natatoria 2.1gfp cells. Conversely, when coaggregation-deficient S. natatoria 2.1COGgfp cells were coinoculated with M. luteus 2.13 cells, the 96-h biofilm contained few coaggregation-deficient S. natatoria 2.1 cells. Thus, coaggregation promotes biofilm integration by facilitating attachment to partner species and likely contributes to the expansion of coaggregating S. natatoria 2.1 populations in dual-species biofilms through competitive interactions.In nature, most biofilms are not composed of one bacterial species but instead contain multiple species (24). These multispecies communities can be responsible for the fouling of ships (9, 44), the corrosion of liquid-carrying vessels (3, 14), and chronic infections in higher organisms (41, 42, 57). Recent research has demonstrated that in order for multispecies biofilm communities to develop, interbacterial communication is often essential (62) and facilitates the coordination of bacterial activities to promote the formation and to maintain the integrity of multispecies biofilm communities (28, 32, 60). Interspecies communication can be mediated by chemical or physical means. Mechanisms for chemical communication between different species include the secretion and uptake of metabolic by-products (11, 19), the exchange of genetic material (40), and the production and recognition of interspecies signal molecules such as short peptides (36) and autoinducer-2 (10). Mechanisms for interspecies physical communication can involve cell surface structures such as flagella or fimbriae (31, 48) and also include nonspecific adhesion between bacterial species (5) as well as highly specific coaggregations mediated by lectin-saccharide interactions (48).Coaggregation, the highly specific recognition and adhesion of different bacterial species to one another, was first discovered to occur between human oral bacteria in 1970 (23). Since then, research has shown that coaggregation occurs between specific bacterial species in environments other than the human oral cavity (48). Coaggregation interactions have been detected between bacteria isolated from canine dental plaque (21), the crop of chickens (61), the human female urogenital tract (30), the human intestine (34), and wastewater and freshwater biofilms (27, 37, 53). In particular, Buswell et al. (8) first demonstrated that coaggregation occurred between 19 freshwater strains that were isolated from a drinking water biofilm. Further studies by Rickard et al. demonstrated that coaggregation between these 19 strains was mediated by growth-phase-dependent lectin-saccharide interactions (49, 50) and occurred at the interspecies and intraspecies levels for nine different genera (50). From this aquatic biofilm consortium, coaggregation between the gram-negative bacterium Sphingomonas (Blastomonas) natatoria 2.1 and the gram-positive bacterium Micrococcus luteus 2.13 have been studied further. Coaggregation between this pair is mediated by the growth-phase-dependent expression of a lectin-like adhesin(s) on S. natatoria 2.1 and a complementary polysaccharide-containing receptor(s) on the cell surface of M. luteus 2.13 (47, 49). The addition of millimolar concentrations of galactosamine resulted in the dispersion of the coaggregates (47, 49). Coaggregation between this pair also occurs after growth in artificial biofilm constructs composed of poloxamer (47). These findings suggested that coaggregation may contribute to the integration of S. natatoria 2.1 into freshwater biofilms through specific adhesive interactions with M. luteus 2.13. Indeed, while coaggregation is hypothesized to contribute to the integration of species into freshwater biofilms (31, 32, 48), no direct evidence has yet been presented. If coaggregation promotes the integration of species into a freshwater biofilm, it may contribute to the retention of pathogens in drinking water pipelines (7) as well as the maintenance of the species diversity of aquatic biofilms that are exposed to shear stress (52, 53).S. natatoria and M. luteus are commonly isolated from moist environments. M. luteus is environmentally ubiquitous and is found in biofilms of aquatic ecosystems (8, 35), in soil (54), and on human and animal skin (17, 29). Cells of M. luteus are gram positive, coccus shaped, arranged in clusters of tetrads, and nonmotile. S. natatoria is indigenous to freshwater environments (55) and has been isolated from swimming pools, deep-ice boreholes, and drinking water systems (1, 50, 56). Cells are gram negative, are rod shaped, and have the propensity to form rosettes containing 4 to 14 cells (55). Each rosette-forming cell has a polar tuft of fimbriae at its nonreproductive pole by which it attaches to other S. natatoria cells and, possibly, solid surfaces (46, 55). Reproduction occurs by asymmetric division (budding) to produce an ovoid daughter cell, which is highly motile, with a single polar flagellum. These ovoid daughter cells do not coaggregate, and only mature cells within rosettes can attach to other species of bacteria. Previous studies indicated that while coaggregation between S. natatoria 2.1 and M. luteus 2.13 is inhibited by the addition of galactosamine, the propensity of S. natatoria 2.1 to form rosettes was unaffected (46, 49).The aim of this work was to determine if coaggregation enhances the attachment of planktonic S. natatoria 2.1 cells to clean glass surfaces as well as glass surfaces precoated with M. luteus 2.13 cells under static and flowing conditions. This study also aimed to provide insight into whether coaggregation contributes to the expansion of S. natatoria 2.1 populations within dual-species biofilms containing M. luteus 2.13. Epifluorescence microscopy and confocal laser scanning microscopy (CLSM) coupled with three different computer-based analysis programs were used throughout this study. Attachment assays were performed using metabolically inactive planktonic coaggregating or coaggregation-deficient variants of S. natatoria 2.1 that were suspended over or that were flowed across metabolically inactive glass-surface-attached M. luteus 2.13 cells. The potential role of coaggregation in promoting the expansion of S. natatoria 2.1 populations within biofilms containing M. luteus 2.13 was investigated by inoculating flow cells with viable cells and monitoring spatiotemporal development. By achieving these two aims, this work demonstrates that coaggregation contributes to biofilm integration and indicates that there is a possible role for coaggregation interactions in the establishment and expansion of S. natatoria populations in freshwater biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号