首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.  相似文献   

2.
3.
4.
Crotepoxide (a substituted cyclohexane diepoxide), isolated from Kaempferia pulchra (peacock ginger), although linked to antitumor and anti-inflammatory activities, the mechanism by which it exhibits these activities, is not yet understood. Because nuclear factor κB (NF-κB) plays a critical role in these signaling pathways, we investigated the effects of crotepoxide on NF-κB-mediated cellular responses in human cancer cells. We found that crotepoxide potentiated tumor necrosis factor (TNF), and chemotherapeutic agents induced apoptosis and inhibited the expression of NF-κB-regulated gene products involved in anti-apoptosis (Bcl-2, Bcl-xL, IAP1,2 MCl-1, survivin, and TRAF1), apoptosis (Bax, Bid), inflammation (COX-2), proliferation (cyclin D1 and c-myc), invasion (ICAM-1 and MMP-9), and angiogenesis (VEGF). We also found that crotepoxide inhibited both inducible and constitutive NF-κB activation. Crotepoxide inhibition of NF-κB was not inducer-specific; it inhibited NF-κB activation induced by TNF, phorbol 12-myristate 13-acetate, lipopolysaccharide, and cigarette smoke. Crotepoxide suppression of NF-κB was not cell type-specific because NF-κB activation was inhibited in myeloid, leukemia, and epithelial cells. Furthermore, we found that crotepoxide inhibited TAK1 activation, which led to suppression of IκBα kinase, abrogation of IκBα phosphorylation and degradation, nuclear translocation of p65, and suppression of NF-κB-dependent reporter gene expression. Overall, our results indicate that crotepoxide sensitizes tumor cells to cytokines and chemotherapeutic agents through inhibition of NF-κB and NF-κB-regulated gene products, and this may provide the molecular basis for crotepoxide ability to suppress inflammation and carcinogenesis.  相似文献   

5.
Corema (C.) album is a shrub endemic to the Atlantic coast and has been described as yielding beneficial effects for human health. Nevertheless, studies concerning the bioactivity of C. album leaves are scarce. This study aims at investigating the anticancer potential and mode of action, of an hydroethanolic extract of C. album leaves (ECAL) on triple-negative breast cancer. This is a poor survival breast cancer subtype, owing to its high risk of distant reappearance, metastasis rates and the probability of relapse. The ECAL ability to prevent tumor progression through (i) the inhibition of cell proliferation (cell viability); (ii) the induction of apoptosis (morphological changes, TUNEL assay, caspase-3 cleaved) and (iii) the induction of DNA damage (PARP1 and γH2AX) with (iv) the involvement of NF-κB and of ERK1/2 pathways (AlphaScreen assay) was evaluated. ECAL activated the apoptotic pathway (through caspase-3) along with the inhibition of ERK and NF-κB pathways causing DNA damage and cell death. The large polyphenolic content of ECAL was presumed to be accountable for these effects. The extract of C. album leaves can target multiple pathways and, thus, can block more than one possible means of disease progression, evidencing the anticancer therapeutic potential from a plant source.  相似文献   

6.
7.
Nuclear factor κB (NF-κB) is an important signaling molecule that plays a critical role in the development of acute pancreatitis. Current methods for examining NF-κB activation involve infection of an adenoviral NF-κB-luciferase reporter into cell lines or electrophoretic mobility shift assay of lysate. The use of adeno-associated viruses (AAVs) has proven to be an effective method of transfecting whole organs in live animals. We examined whether intrapancreatic duct infusion of AAV containing an NF-κB-luciferase reporter (AAV-NF-κB-luciferase) can reliably measure pancreatic NF-κB activation. We confirmed the infectivity of the AAV-NF-κB-luciferase reporter in HEK293 cells using a traditional luciferase readout. Mice were infused with AAV-NF-κB-luciferase 5 weeks before induction of pancreatitis (caerulein, 50 μg/kg). Unlike transgenic mice that globally express NF-κB-luciferase, AAV-infused mice showed a 15-fold increase in pancreas-specific NF-κB bioluminescence following 12 h of caerulein compared with baseline luminescence (p < 0.05). The specificity of the NF-κB-luciferase signal to the pancreas was confirmed by isolating the pancreas and adjacent organs and observing a predominant bioluminescent signal in the pancreas compared with liver, spleen, and stomach. A complementary mouse model of post-ERCP-pancreatitis also induced pancreatic NF-κB signals. Taken together these data provide the first demonstration that NF-κB activation can be examined in a live, dynamic fashion during pancreatic inflammation. We believe this technique offers a valuable tool to study real-time activation of NF-κB in vivo.  相似文献   

8.
The current performance of nature compounds in antitumor field is gradually attracted more and more attention, we discovered a nature active ingredient alizarin possess potent natural reductive NF-κB activity to against pancreatic cancer. However, the preclinical pharmacology and therapeutic effect, and the underlying mechanisms of alizarin in inhibiting pancreatic cancer are still unclear. After high-throughput screening, this is the first report that alizarin can induce a potent inhibitory effect against pancreatic cancer cells. Alizarin induced cell cycle arrest and promoted cell apoptosis by inhibiting TNF-α-stimulated NF-κB activity and nuclear translocation, and inactivated its related TNF-α-TAK1-NF-κB signaling cascade followed by downregulation of NF-κB target genes involved in cell apoptosis (Bcl-2, Bcl-xL, XIAP) and in the cell cycle and growth (cyclin D, c-myc). Due to the abrogation of NF-κB activity, combination of alizarin and gemcitabine exerted a better inhibitory effect on pancreatic cancer. In summary, natural component alizarin, inhibited cell proliferation and induced apoptosis in vitro and in vivo through targeting of the NF-κB signaling cascade with minimal toxicity, which combine with gemcitabine, can significantly enhance the antitumor capability, playing a synergistic effect. Therefore, alizarin may play a role in reversing gemcitabine resistance caused by overactivated NF-κB in clinical application in the future.  相似文献   

9.
10.
11.
Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.  相似文献   

12.
13.

Background

Myelodysplastic syndromes (MDS) are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML). Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT) and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.

Methods

SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI) values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.

Results

Simultaneous exposure to HHT and Bortezomib (10.4:1) resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05). Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05). HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01). The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01).

Conclusions

HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell proliferation and p53 protein expression.  相似文献   

14.
Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2) generates sphingosine-1-phosphate (S1P), a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL) cell lines infected by the Kaposi’s sarcoma-associated herpesvirus (KSHV), and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.  相似文献   

15.
Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL.  相似文献   

16.
In Epstein-Barr virus (EBV)-infected gastric carcinoma, EBV-encoded BARF1 has been hypothesized to function as an oncogene. To evaluate cellular changes induced by BARF1, we isolated the full-length BARF1 gene from gastric carcinoma cells that were naturally infected with EBV and transfected BARF1 into EBV-negative gastric carcinoma cells. BARF1 protein was primarily secreted into culture supernatant and only marginally detectable within cells. Compared with gastric carcinoma cells containing empty vector, BARF1-expressing gastric carcinoma cells exhibited increased cell proliferation (P < 0.05). There were no significant differences in apoptosis, invasion, or migration between BARF1-expressing gastric carcinoma cells and empty vector-transfected cells. BARF1-expressing gastric carcinoma cells demonstrated increased nuclear expression of nuclear factor kappa B (NF-κB) RelA protein and increased NF-κB-dependent cyclin D1. The expression of p21WAF1 was diminished by BARF1 transfection and increased by NF-κB inhibition. Proliferation of naturally EBV-infected gastric carcinoma cells was suppressed by BARF1 small interfering RNA (siRNA) (P < 0.05). Immunohistochemical analysis of 120 human gastric carcinoma tissues demonstrated increased expression of cyclin D1 and reduced expression of p21WAF1 in EBV-positive samples versus EBV-negative gastric carcinomas (P < 0.05). In conclusion, the secreted BARF1 may stimulate proliferation of EBV-infected gastric carcinoma cells via upregulation of NF-κB/cyclin D1 and reduction of the cell cycle inhibitor p21WAF1, thereby facilitating EBV-induced cancer progression.  相似文献   

17.
18.
19.
Host organisms use different innate immune mechanisms to defend against pathogenic infections, while tight control of innate immunity is essential for proper immune induction and balance. Here, we reported that apoptotic induction or caspase-3 overexpression caused dramatic reduction of differently triggered cytokine signalings in human cells, murine primary cells and mouse model, while the loss of caspase-3 or inhibiting apoptosis markedly enhances these immune signalings. Furthermore, caspase-3 can mediate the cleavage of NF-κB members p65/RelA, RelB, and c-Rel via its protease activity. And the caspase-3-resistant p65/RelA, RelB, or c-Rel mutant mostly restored the caspase-3-induced suppression of cytokine production. Interestingly, we further uncovered that apoptotic induction also dramatically inhibited Toll immune signaling in Drosophila, and the Drosophila effector caspases, drICE and DCP-1, also mediated the degradation of DIF, the NF-κB of Toll signaling. Together, our findings demonstrate apoptotic effector caspases, including mammalian caspase-3 and fly drICE/DCP-1, can function as repressors of NF-κB-mediated innate immune signalings.Subject terms: Immunology, Innate immunity  相似文献   

20.
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown. To identify new Tax interacting proteins that may regulate its ubiquitination we conducted a yeast two-hybrid screen using Tax as bait. This screen yielded the E3/E4 ubiquitin conjugation factor UBE4B as a novel binding partner for Tax. Here, we confirmed the interaction between Tax and UBE4B in mammalian cells by co-immunoprecipitation assays and demonstrated colocalization by proximity ligation assay and confocal microscopy. Overexpression of UBE4B specifically enhanced Tax-induced NF-κB activation, whereas knockdown of UBE4B impaired Tax-induced NF-κB activation and the induction of NF-κB target genes in T cells and ATLL cell lines. Furthermore, depletion of UBE4B with shRNA resulted in apoptotic cell death and diminished the proliferation of ATLL cell lines. Finally, overexpression of UBE4B enhanced Tax polyubiquitination, and knockdown or CRISPR/Cas9-mediated knockout of UBE4B attenuated both K48- and K63-linked polyubiquitination of Tax. Collectively, these results implicate UBE4B in HTLV-1 Tax polyubiquitination and downstream NF-κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号