首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

Genome-wide association studies have facilitated the identification of over 30 susceptibility loci for rheumatoid arthritis (RA). However, evidence for a number of potential susceptibility genes have not so far reached genome-wide significance in studies of Caucasian RA.

Methods

A cohort of 4286 RA patients from across Europe and 5642 population matched controls were genotyped for 25 SNPs, then combined in a meta-analysis with previously published data.

Results

Significant evidence of association was detected for nine SNPs within the European samples. When meta-analysed with previously published data, 21 SNPs were associated with RA susceptibility. Although SNPs in the PTPN2 gene were previously reported to be associated with RA in both Japanese and European populations, we show genome-wide evidence for a different SNP within this gene associated with RA susceptibility in an independent European population (rs7234029, P = 4.4×10−9).

Conclusions

This study provides further genome-wide evidence for the association of the PTPN2 locus (encoding the T cell protein tyrosine phosphastase) with Caucasian RA susceptibility. This finding adds to the growing evidence for PTPN2 being a pan-autoimmune susceptibility gene.  相似文献   

2.
Osteoarthritis (OA) is a common disease that has a definite genetic component. Only a few OA susceptibility genes that have definite functional evidence and replication of association have been reported, however. Through a genome-wide association study and a replication using a total of ∼4,800 Japanese subjects, we identified two single nucleotide polymorphisms (SNPs) (rs7775228 and rs10947262) associated with susceptibility to knee OA. The two SNPs were in a region containing HLA class II/III genes and their association reached genome-wide significance (combined P = 2.43×10−8 for rs7775228 and 6.73×10−8 for rs10947262). Our results suggest that immunologic mechanism is implicated in the etiology of OA.  相似文献   

3.
Bicuspid Aortic Valve (BAV) is a highly heritable congenital heart defect. The low frequency of BAV (1% of general population) limits our ability to perform genome-wide association studies. We present the application of four a priori SNP selection techniques, reducing the multiple-testing penalty by restricting analysis to SNPs relevant to BAV in a genome-wide SNP dataset from a cohort of 68 BAV probands and 830 control subjects. Two knowledge-based approaches, CANDID and STRING, were used to systematically identify BAV genes, and their SNPs, from the published literature, microarray expression studies and a genome scan. We additionally tested Functionally Interpolating SNPs (fitSNPs) present on the array; the fourth consisted of SNPs selected by Random Forests, a machine learning approach. These approaches reduced the multiple testing penalty by lowering the fraction of the genome probed to 0.19% of the total, while increasing the likelihood of studying SNPs within relevant BAV genes and pathways. Three loci were identified by CANDID, STRING, and fitSNPS. A haplotype within the AXIN1-PDIA2 locus (p-value of 2.926×10−06) and a haplotype within the Endoglin gene (p-value of 5.881×10−04) were found to be strongly associated with BAV. The Random Forests approach identified a SNP on chromosome 3 in association with BAV (p-value 5.061×10−06). The results presented here support an important role for genetic variants in BAV and provide support for additional studies in well-powered cohorts. Further, these studies demonstrate that leveraging existing expression and genomic data in the context of GWAS studies can identify biologically relevant genes and pathways associated with a congenital heart defect.  相似文献   

4.
As one of the main breeding selection criteria, external appearance has special economic importance in the hog industry. In this study, an Illumina Porcine SNP60 BeadChip was used to conduct a genome-wide association study (GWAS) in 605 pigs of the F2 generation derived from a Large White × Minzhu intercross. Traits under study were abdominal circumference (AC), body height (BH), body length (BL), cannon bone circumference (CBC), chest depth (CD), chest width (CW), rump circumference (RC), rump width (RW), scapula width (SW), and waist width (WW). A total of 138 SNPs (the most significant being MARC0033464) on chromosome 7 were found to be associated with BH, BL, CBC, and RC (P-value  = 4.15E-6). One SNP on chromosome 1 was found to be associated with CD at genome-wide significance levels. The percentage phenotypic variance of these significant SNPs ranged from 0.1–25.48%. Moreover, a conditional analysis revealed that the significant SNPs were derived from a single quantitative trait locus (QTL) and indicated additional chromosome-wide significant association for 25 SNPs on SSC4 (BL, CBC) and 9 SNPs on SSC7 (RC). Linkage analysis revealed two complete linkage disequilibrium haplotype blocks that contained seven and four SNPs, respectively. In block 1, the most significant SNP, MARC0033464, was present. Annotations from pig reference genome suggested six genes (GRM4, HMGA1, NUDT3, RPS10, SPDEF and PACSIN1) in block 1 (495 kb), and one gene (SCUBE3) in block 3 (124 kb). Functional analysis indicated that HMGA1 and SCUBE3 genes are the potential genes controlling BH, BL, and RC in pigs, with an application in breeding programs. We screened several candidate intervals and genes based on SNP location and gene function, and predicted their function using bioinformatics analyses.  相似文献   

5.
Restless legs syndrome (RLS) is a common neurologic disorder characterized by nightly dysesthesias affecting the legs primarily during periods of rest and relieved by movement. RLS is a complex genetic disease and susceptibility factors in six genomic regions have been identified by means of genome-wide association studies (GWAS). For some complex genetic traits, expression quantitative trait loci (eQTLs) are enriched among trait-associated single nucleotide polymorphisms (SNPs). With the aim of identifying new genetic susceptibility factors for RLS, we assessed the 332 best-associated SNPs from the genome-wide phase of the to date largest RLS GWAS for cis-eQTL effects in peripheral blood from individuals of European descent. In 740 individuals belonging to the KORA general population cohort, 52 cis-eQTLs with pnominal<10−3 were identified, while in 976 individuals belonging to the SHIP-TREND general population study 53 cis-eQTLs with pnominal<10−3 were present. 23 of these cis-eQTLs overlapped between the two cohorts. Subsequently, the twelve of the 23 cis-eQTL SNPs, which were not located at an already published RLS-associated locus, were tested for association in 2449 RLS cases and 1462 controls. The top SNP, located in the DET1 gene, was nominally significant (p<0.05) but did not withstand correction for multiple testing (p = 0.42). Although a similar approach has been used successfully with regard to other complex diseases, we were unable to identify new genetic susceptibility factor for RLS by adding this novel level of functional assessment to RLS GWAS data.  相似文献   

6.
Genetic factors play an important role in the etiology of breast cancer. We carried out a multi-stage genome-wide association (GWA) study in over 28,000 cases and controls recruited from 12 studies conducted in Asian and European American women to identify genetic susceptibility loci for breast cancer. After analyzing 684,457 SNPs in 2,073 cases and 2,084 controls in Chinese women, we evaluated 53 SNPs for fast-track replication in an independent set of 4,425 cases and 1,915 controls of Chinese origin. Four replicated SNPs were further investigated in an independent set of 6,173 cases and 6,340 controls from seven other studies conducted in Asian women. SNP rs4784227 was consistently associated with breast cancer risk across all studies with adjusted odds ratios (95% confidence intervals) of 1.25 (1.20−1.31) per allele (P = 3.2×10−25) in the pooled analysis of samples from all Asian samples. This SNP was also associated with breast cancer risk among European Americans (per allele OR  = 1.19, 95% CI  = 1.09−1.31, P = 1.3×10−4, 2,797 cases and 2,662 controls). SNP rs4784227 is located at 16q12.1, a region identified previously for breast cancer risk among Europeans. The association of this SNP with breast cancer risk remained highly statistically significant in Asians after adjusting for previously-reported SNPs in this region. In vitro experiments using both luciferase reporter and electrophoretic mobility shift assays demonstrated functional significance of this SNP. These results provide strong evidence implicating rs4784227 as a functional causal variant for breast cancer in the locus 16q12.1 and demonstrate the utility of conducting genetic association studies in populations with different genetic architectures.  相似文献   

7.
Type 1 diabetes (T1D) is an autoimmune disease resulting from the complex interaction between multiple susceptibility genes, environmental factors and the immune system. Over 40 T1D susceptibility regions have been suggested by recent genome-wide association studies; however, the specific genes and their role in the disease remain elusive. The objective of this study is to identify the susceptibility gene(s) in the 12q13 region and investigate the functional link to the disease pathogenesis. A total of 19 SNPs in the 12q13 region were analyzed by the TaqMan assay for 1,434 T1D patients and 1,865 controls. Thirteen of the SNPs are associated with T1D (best p = 4×10−11), thus providing confirmatory evidence for at least one susceptibility gene in this region. To identify candidate genes, expression of six genes in the region was analyzed by real-time RT-PCR for PBMCs from 192 T1D patients and 192 controls. SNP genotypes in the 12q13 region are the main factors that determine ERBB3 mRNA levels in PBMCs. The protective genotypes for T1D are associated with higher ERBB3 mRNA level (p<10−10). Furthermore, ERBB3 protein is expressed on the surface of CD11c+ cells (dendritic cells and monocytes) in peripheral blood after stimulation with LPS, polyI:C or CpG. Subjects with protective genotypes have significantly higher percentages of ERBB3+ monocytes and dendritic cells (p = 1.1×10−9); and the percentages of ERBB3+ cells positively correlate with the ability of APC to stimulate T cell proliferation (R2 = 0.90, p<0.0001). Our results indicate that ERBB3 plays a critical role in determining APC function and potentially T1D pathogenesis.  相似文献   

8.
Elucidation of the genetic susceptibility factors for diabetic retinopathy (DR) is important to gain insight into the pathogenesis of DR, and may help to define genetic risk factors for this condition. In the present study, we conducted a three-stage genome-wide association study (GWAS) to identify DR susceptibility loci in Japanese patients, which comprised a total of 837 type 2 diabetes patients with DR (cases) and 1,149 without DR (controls). From the stage 1 genome-wide scan of 446 subjects (205 cases and 241 controls) on 614,216 SNPs, 249 SNPs were selected for the stage 2 replication in 623 subjects (335 cases and 288 controls). Eight SNPs were further followed up in a stage 3 study of 297 cases and 620 controls. The top signal from the present association analysis was rs9362054 in an intron of RP1-90L14.1 showing borderline genome-wide significance (Pmet = 1.4×10−7, meta-analysis of stage 1 and stage 2, allele model). RP1-90L14.1 is a long intergenic non-coding RNA (lincRNA) adjacent to KIAA1009/QN1/CEP162 gene; CEP162 plays a critical role in ciliary transition zone formation before ciliogenesis. The present study raises the possibility that the dysregulation of ciliary-associated genes plays a role in susceptibility to DR.  相似文献   

9.

Aims

The DUSP9 locus on chromosome X was identified as a susceptibility locus for type 2 diabetes in a meta-analysis of European genome-wide association studies (GWAS), and GWAS in South Asian populations identified 6 additional single nucleotide polymorphism (SNP) loci for type 2 diabetes. However, the association of these loci with type 2 diabetes have not been examined in the Japanese. We performed a replication study to investigate the association of these 7 susceptibility loci with type 2 diabetes in the Japanese population.

Methods

We genotyped 11,319 Japanese participants (8,318 with type 2 diabetes and 3,001 controls) for each of the 7 SNPs–rs5945326 near DUSP9, rs3923113 near GRB14, rs16861329 in ST6GAL1, rs1802295 in VPS26A, rs7178572 in HMG20A, rs2028299 near AP3S2, and rs4812829 in HNF4A–and examined the association of each of these 7 SNPs with type 2 diabetes by using logistic regression analysis.

Results

All SNPs had the same direction of effect (odds ratio [OR]>1.0) as in the original reports. One SNP, rs5945326 near DUSP9, was significantly associated with type 2 diabetes at a genome-wide significance level (p = 2.21×10−8; OR 1.39, 95% confidence interval [CI]: 1.24−1.56). The 6 SNPs derived from South Asian GWAS were not significantly associated with type 2 diabetes in the Japanese population by themselves (p≥0.007). However, a genetic risk score constructed from 6 South Asian GWAS derived SNPs was significantly associated with Japanese type 2 diabetes (p = 8.69×10−4, OR  = 1.06. 95% CI; 1.03−1.10).

Conclusions/interpretation

These results indicate that the DUSP9 locus is a common susceptibility locus for type 2 diabetes across different ethnicities, and 6 loci identified in South Asian GWAS also have significant effect on susceptibility to Japanese type 2 diabetes.  相似文献   

10.
Given the role of CD247 in the response of the T cells, its entailment in autoimmune diseases and in order to better clarify the role of this gene in RA susceptibility, we aimed to analyze CD247 gene variants previously associated with other autoimmune diseases (rs1052237, rs2056626 and rs864537) in a large independent European Caucasian population. However, no evidence of association was found for the analyzed CD247 single-nucleotide polymorphisms (SNPs) with RA and with the presence/absence of anti-cyclic citrullinated polypeptide. We performed a meta-analysis including previously published GWAS data from the rs864537 variant, revealing an overall genome-wide significant association between this CD247 SNP and RA with anti-CCP (OR = 0.90, CI 95% = 0.87–0.93, Poverall = 2.1×10−10). Our results show for first time a GWAS-level association between this CD247 polymorphism and RA risk.  相似文献   

11.
《PloS one》2013,8(4)
To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values <2×10−5 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P = 7.33×10−7 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P = 1.77×10−9) and rs3781834 (P = 1.04×10−8). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.71×10−5) and rs744373 near BIN1 (P = 1.39×10−4). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.  相似文献   

12.
Genome-wide association studies (GWAS) have identified 38 larger genetic regions affecting classical blood lipid levels without adjusting for important environmental influences. We modeled diet and physical activity in a GWAS in order to identify novel loci affecting total cholesterol, LDL cholesterol, HDL cholesterol, and triglyceride levels. The Swedish (SE) EUROSPAN cohort (N SE = 656) was screened for candidate genes and the non-Swedish (NS) EUROSPAN cohorts (N NS = 3,282) were used for replication. In total, 3 SNPs were associated in the Swedish sample and were replicated in the non-Swedish cohorts. While SNP rs1532624 was a replication of the previously published association between CETP and HDL cholesterol, the other two were novel findings. For the latter SNPs, the p-value for association was substantially improved by inclusion of environmental covariates: SNP rs5400 (p SE,unadjusted = 3.6×10−5, p SE,adjusted = 2.2×10−6, p NS,unadjusted = 0.047) in the SLC2A2 (Glucose transporter type 2) and rs2000999 (p SE,unadjusted = 1.1×10−3, p SE,adjusted = 3.8×10−4, p NS,unadjusted = 0.035) in the HP gene (Haptoglobin-related protein precursor). Both showed evidence of association with total cholesterol. These results demonstrate that inclusion of important environmental factors in the analysis model can reveal new genetic susceptibility loci.  相似文献   

13.
The thoracic-to-hip circumference ratio (THR) is an anthropometric marker recently described as a predictor of type 2 diabetes. In this study, we performed a genome-wide association study (GWAS) followed by confirmatory analyses to identify genetic markers associated with THR. A total of 7,240 Korean subjects (4,988 for the discovery stage and 2,252 for the confirmatory analyses) were recruited for this study, and genome-wide single nucleotide polymorphism (SNP) genotyping of the initial 4,988 individuals was performed using Affymetrix Human SNP array 5.0. Linear regression analysis was then performed to adjust for the effects of age, sex, and current diabetes medication status on the THR of the study subjects. In the initial discovery stage, there was a statistically nominal association between minor alleles of SNP markers on chromosomes 4, 8, 10, and 12, and THR changes (p < 5.0 × 10−6). The subsequent confirmatory analyses of these markers, however, only detected a significant association between two SNPs in the HECTD4 gene and decreased THRs. Notably, this association was detected in male (rs11066280: p = 1.14 × 10−2; rs2074356: p = 1.10 × 10−2), but not in female subjects. Meanwhile, the combined results from the two analyses (initial and confirmatory) indicated that minor alleles of these two intronic variants exhibited a significant genome-wide association with decreased THR in the male subjects (n = 3,155; rs11066280: effect size = −0.008624, p = 6.19 × 10−9; rs2074356: effect size = −0.008762, p = 1.89 × 10−8). Furthermore, minor alleles of these two SNPs exhibited protective effects on patients’ risks for developing type 2 diabetes. In conclusion, we have identified two genetic variations in HECTD4 that are associated with THR, particularly in men.  相似文献   

14.
《PloS one》2009,4(6)
The outcome of Genome-Wide Association Studies (GWAS) has challenged the field of blood pressure (BP) genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany) to address (i) SNP coverage in 160 BP candidate genes; (ii) the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region±10 kb) covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11) to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P<10−3) were detected for the genes, where >50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb) revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15×10−5), the strength of some detected associations was close to this level: rs10889553 (LEPR) and systolic BP (SBP) (P = 4.5×10−5) as well as rs10954174 (LEP) and diastolic BP (DBP) (P = 5.20×10−5). In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1) revealed considerable association (P<10−3) either with SBP, DBP, and/or hypertension (HYP). None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT). However, supportive evidence for the association of rs10889553 (LEPR) and rs11195419 (ADRA2A) with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.  相似文献   

15.
16.
C-reactive protein (CRP) is a general marker of systemic inflammation and cardiovascular disease (CVD). The genetic contribution to differences in CRP levels remains to be explained, especially in non-European populations. Thus, the aim of this study was to identify genetic loci associated with CRP levels in Korean population. We performed genome-wide association studies (GWAS) using SNPs from 8,529 Korean individuals (7,626 for stage 1 and 903 for stage 2). We also performed pathway analysis. We identified a new genetic locus associated with CRP levels upstream of ARG1 gene (top significant SNP: rs9375813, Pmeta = 2.85×10−8), which encodes a key enzyme of the urea cycle counteract the effects of nitric oxide, in addition to known CRP (rs7553007, Pmeta = 1.72×10−16) and HNF1A loci (rs2259816, Pmeta = 2.90×10−10). When we evaluated the associations between the CRP-related SNPs with cardiovascular disease phenotypes, rs9375813 (ARG1) showed a marginal association with hypertension (P = 0.0440). To identify more variants and pathways, we performed pathway analysis and identified six candidate pathways comprised of genes related to inflammatory processes and CVDs (CRP, HNF1A, PCSK6, CD36, and ABCA1). In addition to the previously reported loci (CRP, HNF1A, and IL6) in diverse ethnic groups, we identified novel variants in the ARG1 locus associated with CRP levels in Korean population and a number of interesting genes related to inflammatory processes and CVD through pathway analysis.  相似文献   

17.
The evidence for the existence of genetic susceptibility variants for the common form of hypertension (“essential hypertension”) remains weak and inconsistent. We sought genetic variants underlying blood pressure (BP) by conducting a genome-wide association study (GWAS) among African Americans, a population group in the United States that is disproportionately affected by hypertension and associated complications, including stroke and kidney diseases. Using a dense panel of over 800,000 SNPs in a discovery sample of 1,017 African Americans from the Washington, D.C., metropolitan region, we identified multiple SNPs reaching genome-wide significance for systolic BP in or near the genes: PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H. Two of these genes, SLC24A4 (a sodium/potassium/calcium exchanger) and CACNA1H (a voltage-dependent calcium channel), are potential candidate genes for BP regulation and the latter is a drug target for a class of calcium channel blockers. No variant reached genome wide significance for association with diastolic BP (top scoring SNP rs1867226, p = 5.8×10−7) or with hypertension as a binary trait (top scoring SNP rs9791170, p = 5.1×10−7). We replicated some of the significant SNPs in a sample of West Africans. Pathway analysis revealed that genes harboring top-scoring variants cluster in pathways and networks of biologic relevance to hypertension and BP regulation. This is the first GWAS for hypertension and BP in an African American population. The findings suggests that, in addition to or in lieu of relying solely on replicated variants of moderate-to-large effect reaching genome-wide significance, pathway and network approaches may be useful in identifying and prioritizing candidate genes/loci for further experiments.  相似文献   

18.
19.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p=8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.  相似文献   

20.
We applied genome-wide allele-specific expression analysis of monocytes from 188 samples. Monocytes were purified from white blood cells of healthy blood donors to detect cis-acting genetic variation that regulates the expression of long non-coding RNAs. We analysed 8929 regions harboring genes for potential long non-coding RNA that were retrieved from data from the ENCODE project. Of these regions, 60% were annotated as intergenic, which implies that they do not overlap with protein-coding genes. Focusing on the intergenic regions, and using stringent analysis of the allele-specific expression data, we detected robust cis-regulatory SNPs in 258 out of 489 informative intergenic regions included in the analysis. The cis-regulatory SNPs that were significantly associated with allele-specific expression of long non-coding RNAs were enriched to enhancer regions marked for active or bivalent, poised chromatin by histone modifications. Out of the lncRNA regions regulated by cis-acting regulatory SNPs, 20% (n = 52) were co-regulated with the closest protein coding gene. We compared the identified cis-regulatory SNPs with those in the catalog of SNPs identified by genome-wide association studies of human diseases and traits. This comparison identified 32 SNPs in loci from genome-wide association studies that displayed a strong association signal with allele-specific expression of non-coding RNAs in monocytes, with p-values ranging from 6.7×10−7 to 9.5×10−89. The identified cis-regulatory SNPs are associated with diseases of the immune system, like multiple sclerosis and rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号