首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The existence and identity of non-Watson-Crick base pairs (bps) within RNA bulges, internal loops, and hairpin loops cannot reliably be predicted by existing algorithms. We have developed the Isfold (Isosteric Folding) program as a tool to examine patterns of nucleotide substitutions from sequence alignments or mutation experiments and identify plausible bp interactions. We infer these interactions based on the observation that each non-Watson-Crick bp has a signature pattern of isosteric substitutions where mutations can be made that preserve the 3D structure. Isfold produces a dynamic representation of predicted bps within defined motifs in order of their probabilities. The software was developed under Windows XP, and is capable of running on PC and MAC with Matlab 7.1 (SP3) or higher. A PC stand-alone version that does not require Matlab also is available. This software and a user manual are freely available at www.ucsf.edu/frankel/isfold.  相似文献   

3.
The hydration patterns around the RNA Watson-Crick and non-Watson-Crick base pairs in crystals are analyzed and described. The results indicate that (i) the base pair hydration is mostly "in-plane"; (ii) eight hydration sites surround the Watson-Crick G-C and A-U base pairs, with five in the deep and three in the shallow groove, an observation which extends the characteristic isostericity of Watson-Crick pairs; (iii) while the hydration around G-C base pairs is well defined, the hydration around A-U base pairs is more diffuse; (iv) the hydration sites close to the phosphate groups are the best defined and the most recurrent ones; (v) a string of water molecules links the two shallow groove 2'-hydroxyl groups, and (vi) the water molecules fit into notches, the size and accessibility of which are almost as important as the number and strength of the hydrophilic groups lining the cavity. Residence times of water molecules at specific hydration sites, inferred from molecular dynamics simulations, are discussed in the light of present data.  相似文献   

4.
Geometric nomenclature and classification of RNA base pairs   总被引:26,自引:9,他引:17       下载免费PDF全文
  相似文献   

5.
Pronounced instability of tandem IU base pairs in RNA   总被引:1,自引:1,他引:0       下载免费PDF全文
Optical melting was used to determine the stabilities of three series of RNA oligomers containing tandem XU base pairs, GGCXUGCC (5′XU3′), GGCUXGCC (5′UX3′) and GGCXXGGC/CCGUUCCG (5′XX3′), where X is either A, G or I (inosine). The helices containing tandem AU base pairs were the most stable in the first two series (5′XU3′ and 5′UX3′), with an average melting temperature ~11°C higher than the helices with tandem 5′GU3′ base pairs and 25°C higher than the helices with tandem 5′IU3′ base pairs. For the third series (5′XX3′), the helix containing tandem GG is the most stable, with an average melting temperature ~2°C higher than the helix with tandem AA base pairs and ~24°C higher than the helix with tandem II base pairs. The thermodynamic stability of the oligomers with tandem IU base pairs was also investigated as a function of magnesium ion concentration. As with normal A–U or G–U tandem duplexes, the data could best be interpreted as non-specific binding of magnesium ions to the inosine-containing RNA oligonucleotides.  相似文献   

6.
7.
Vecenie CJ  Serra MJ 《Biochemistry》2004,43(37):11813-11817
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the type GCAXUAAUYUGC, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates that the free energy of loop formation at 37 degrees C varies from 3.2 to 5.0 kcal/mol. These results combined with the model previously developed [Dale et al. (2000) RNA 6, 608] allow improvements in the model to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n)) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Hairpins with GG first mismatches were found to vary in stability depending upon the orientation of the closing base pair (5' or 3' purine relative to the loop). The model gives good agreement when tested against four naturally occurring hairpin sequences.  相似文献   

8.
Atomic resolution RNA structures are being published at an increasing rate. It is common to find a modest number of non-canonical base pairs in these structures in addition to the usual Watson-Crick pairs. This database summarizes the occurrence of these rare base pairs in accordance with standard nomenclature. The database, http://prion.bchs.uh.edu/, contains information such as sequence context, sugar pucker conformation, anti / syn base conformations, chemical shift, p K (a)values, melting temperature and free energy. Of the 29 anticipated pairs with two or more hydrogen bonds, 20 have been encountered to date. In addition, four unexpected pairs with two hydrogen bonds have been reported bringing the total to 24. Single hydrogen bond versions of five of the expected geometries have been encountered among the single hydrogen bond interactions. In addition, 18 different types of base triplets have been encountered, each of which involves three to six hydrogen bonds. The vast majority of the rare base pairs are antiparallel with the bases in the anti configuration relative to the ribose. The most common are the GU wobble, the Sheared GA pair, the Reverse Hoogsteen pair and the GA imino pair.  相似文献   

9.
10.
The structures of tandem non-canonical base pairs, a frequently recurring motif in RNA molecules, are reviewed and analysed. The tandem non-canonical base pair motifs can be roughly divided in three groups, containing seven subgroups based on their base pairing patterns and local geometries. Structural details and helical parameters that can be used to numerically distinguish between the subgroups are tabulated. Remarkably, while the individual helical twists of the tandem and adjacent base pair steps can be substantially smaller or larger than the typical A-form value of 32.7 degrees, the average value is close to A-form. This and other striking regularities resulting from compensating geometrical adjustments, important for understanding and predicting the configurations of non-canonical base pairs geometries are discussed.  相似文献   

11.
A tridecaribonucleotide, r(UGAGCUUCGGCUC) doesn't form hairpin or interior loop and forms a double helix of 12 base pairs including the four successive nonstandard base pairs, U.G-U.C-C.U-G.U, in the crystal. Non-Watson-Crick base pairs, G.U and U.C are nicely incorporated in RNA duplex maintaining the regular A-form backbone. There exist the good overlapping between base pairings, U.G and U.C, so as to stabilize the nonstandard base pair track. Hydrogen bond networks involving water molecules in the major and minor grooves to stabilize this mismatch base pairing array, are observed and its conformational features are described.  相似文献   

12.
D P Bartel  M L Zapp  M R Green  J W Szostak 《Cell》1991,67(3):529-536
We have used an iterative in vitro genetic selection to identify the important structural features of the viral RNA element bound by the Rev protein of human immunodeficiency virus type 1 (HIV-1). Functional Rev-binding RNAs were selected from a pool of 10(13) variants of the wild-type Rev-binding domain. Bases conserved among the binding species define a 20 nucleotide core binding element. Covariation of some of these conserved bases indicates that the Rev-binding element is a stem-bulge-stem with a G:G base pair in the bulge. Mutational studies show that this non-Watson-Crick base pair is required for Rev binding in vitro and Rev responsiveness in vivo. We propose that the G:G base pair distorts the sugar-phosphate backbone of viral RNA and that this distortion is a critical determinant of recognition by Rev.  相似文献   

13.
The success of comparative analysis in resolving RNA secondary structure and numerous tertiary interactions relies on the presence of base covariations. Although the majority of base covariations in aligned sequences is associated to Watson-Crick base pairs, many involve non-canonical or restricted base pair exchanges (e.g. only G:C/A:U), reflecting more specific structural constraints. We have developed a computer program that determines potential base pairing conformations for a given set of paired nucleotides in a sequence alignment. This program (ISOPAIR) assumes that the base pair conformation is maintained through sequence variation without significantly affecting the path of the sugar-phosphate backbone. ISOPAIR identifies such 'isomorphic' structures for any set of input base pair or base triple sequences. The program was applied to base pairs and triples with known structures and sequence exchanges. In several instances, isomorphic structures were correctly identified with ISOPAIR. Thus, ISOPAIR is useful when assessing non-canonical base pair conformations in comparative analysis. ISOPAIR applications are limited to those cases where unusual base pair exchanges indeed reflect a non-canonical conformation.  相似文献   

14.
15.
16.
17.
We present a rapid experimental strategy for inferring base pairs in structured RNAs via an information-rich extension of classic chemical mapping approaches. The mutate-and-map method, previously applied to a DNA/RNA helix, systematically searches for single mutations that enhance the chemical accessibility of base-pairing partners distant in sequence. To test this strategy for structured RNAs, we have carried out mutate-and-map measurements for a 35-nt hairpin, called the MedLoop RNA, embedded within an 80-nt sequence. We demonstrate the synthesis of all 105 single mutants of the MedLoop RNA sequence and present high-throughput DMS, CMCT, and SHAPE modification measurements for this library at single-nucleotide resolution. The resulting two-dimensional data reveal visually clear, punctate features corresponding to RNA base pair interactions as well as more complex features; these signals can be qualitatively rationalized by comparison to secondary structure predictions. Finally, we present an automated, sequence-blind analysis that permits the confident identification of nine of the 10 MedLoop RNA base pairs at single-nucleotide resolution, while discriminating against all 1460 false-positive base pairs. These results establish the accuracy and information content of the mutate-and-map strategy and support its feasibility for rapidly characterizing the base-pairing patterns of larger and more complex RNA systems.  相似文献   

18.
DNA base modification: ionized base pairs and mutagenesis   总被引:5,自引:0,他引:5  
The nature of hydrogen bonding between normal and modified bases has been re-examined. It is proposed that hydrogen-bonding schemes may involve tautomeric, ionized or conformational forms (syn, anti and wobble). Several important cases are presented or reviewed in which physical evidence indicates the existence of ionized base pairs. When thermodynamic values determined in aqueous solution under physiological conditions are considered, it can be argued that base ionization will contribute substantially to the stability of many biologically relevant base pairs containing modified bases. A significant incidence of ionized bases in DNA may have important kinetic ramifications for the further chemical reactivity of both the modified base and its cross-strand pairing partner. Moreover, DNA structure at and surrounding ionized base pairs may be altered. For this reason, the model presented in this study should be useful as DNA-sequence analysis becomes more commonly applied to the study of mutagenesis.  相似文献   

19.
Summary The glyUsu AGA mutation affects Escherichia coli tRNA GGG G1 y , changing it to an AGA missense suppressor tRNA. Sequence studies have shown that the mutation involves a double base substitution at the first and third positions of the tRNA anticodon, the result being a change in the anticodon from CCC to UCU. A system has been developed to facilitate the detection of this novel mutation, and we have shown that ultraviolet irradiation and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are effective in causing the double base change. A single observation of the mutation occurring spontaneously has been made also. The frequency of MNNG-induced glyUsu AGA mutations is compatible with their being caused by two separate mutagenic events. The frequency of UV-induced glyUsu AGA mutations, however, strongly suggests that the occurrence of one base substitution strongly enhances the chance of finding the second substitution at the alternate position.In addition to the double change in the anticodon, the glyUsu AGA tRNA differs from tRNA GGG G1 y in that it bears a modification of the A adjacent to the 3 position of the anticodon. Most likely, this modified base is N-[9-(-D-ribofuranosyl)-purin-6-ylcarbamoyl] threonine.  相似文献   

20.
Hypoxanthine (H), the deamination product of adenine, has been implicated in the high frequency of A to G transitions observed in retroviral and other RNA genomes. Although H·C base pairs are thermodynamically more stable than other H·N pairs, polymerase selection may be determined in part by kinetic factors. Therefore, the hypoxanthine induced substitution pattern resulting from replication by viral polymerases may be more complex than that predicted from thermodynamics. We have examined the steady-state kinetics of formation of base pairs opposite template H in RNA by HIV-RT, and for the incorporation of dITP during first- and second-strand synthesis. Hypoxanthine in an RNA template enhances the k2app for pairing with standard dNTPs by factors of 10–1000 relative to adenine at the same sequence position. The order of base pairing preferences for H in RNA was observed to be H·C >> H·T > H·A > H·G. Steady-state kinetics of insertion for all possible mispairs formed with dITP were examined on RNA and DNA templates of identical sequence. Insertion of dITP opposite all bases occurs 2–20 times more frequently on RNA templates. This bias for higher insertion frequencies on RNA relative to DNA templates is also observed for formation of mispairs at template A. This kinetic advantage afforded by RNA templates for mismatches and pairing involving H suggests a higher induction of mutations at adenines during first-strand synthesis by HIV-RT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号