首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Complex N-glycans flank the receptor binding sites of the outer domain of HIV-1 gp120, ostensibly forming a protective “fence” against antibodies. Here, we investigated the effects of rebuilding this fence with smaller glycoforms by expressing HIV-1 pseudovirions from a primary isolate in a human cell line lacking N-acetylglucosamine transferase I (GnTI), the enzyme that initiates the conversion of oligomannose N-glycans into complex N-glycans. Thus, complex glycans, including those that surround the receptor binding sites, are replaced by fully trimmed oligomannose stumps. Conversely, the untrimmed oligomannoses of the silent domain of gp120 are likely to remain unchanged. For comparison, we produced a mutant virus lacking a complex N-glycan of the V3 loop (N301Q). Both variants exhibited increased sensitivities to V3 loop-specific monoclonal antibodies (MAbs) and soluble CD4. The N301Q virus was also sensitive to “nonneutralizing” MAbs targeting the primary and secondary receptor binding sites. Endoglycosidase H treatment resulted in the removal of outer domain glycans from the GnTI- but not the parent Env trimers, and this was associated with a rapid and complete loss in infectivity. Nevertheless, the glycan-depleted trimers could still bind to soluble receptor and coreceptor analogs, suggesting a block in post-receptor binding conformational changes necessary for fusion. Collectively, our data show that the antennae of complex N-glycans serve to protect the V3 loop and CD4 binding site, while N-glycan stems regulate native trimer conformation, such that their removal can lead to global changes in neutralization sensitivity and, in extreme cases, an inability to complete the conformational rearrangements necessary for infection.The intriguing results of a recent clinical trial suggest that an effective HIV-1 vaccine may be possible (97). Optimal efficacy may require a component that induces broadly neutralizing antibodies (BNAbs) that can block virus infection by their exclusive ability to recognize the trimeric envelope glycoprotein (Env) spikes on particle surfaces (43, 50, 87, 90). Env is therefore at the center of vaccine design programs aiming to elicit effective humoral immune responses.The amino acid sequence variability of Env presents a significant challenge for researchers seeking to elicit broadly effective NAbs. Early sequence comparisons revealed, however, that the surface gp120 subunit can be divided into discrete variable and conserved domains (Fig. (Fig.1A)1A) (110), the latter providing some hope for broadly effective NAb-based vaccines. Indeed, the constraints on variability in the conserved domains of gp120 responsible for binding the host cell receptor CD4, and coreceptor, generally CCR5, provide potential sites of vulnerability. However, viral defense strategies, such as the conformational masking of conserved epitopes (57), have made the task of eliciting bNAbs extremely difficult.Open in a separate windowFIG. 1.Glycan biosynthesis and distribution on gp120 and gp41. (A) Putative carbohydrate modifications are shown on gp120 and gp41 secondary structures, based on various published works (26, 42, 63, 74, 119, 128). The gp120 outer domain is indicated, as are residues that form the SOS gp120-gp41 disulfide bridge. The outer domain is divided into neutralizing and silent faces. Symbols distinguish complex, oligomannose, and unknown glycans. Generally, the complex glycans of the outer domain line the receptor binding sites of the neutralizing face, while the oligomannose glycans of the outer domain protect the silent domain (105). Asterisks denote sequons that are unlikely to be utilized, including position 139 (42), position 189 (26, 42), position 406 (42, 74), and position 637 (42). Glycans shown in gray indicate when sequon clustering may lead to some remaining unused, e.g., positions 156 and 160 (42, 119), positions 386, 392, and 397 (42), and positions 611 and 616 (42). There is also uncertainty regarding some glycan identities: glycans at positions 188, 355, 397, and 448 are not classified as predominantly complex or oligomannose (26, 42, 63, 128). The number of mannose moieties on oligomannose glycans can vary, as can the number of antennae and sialic acids on complex glycans (77). The glycan at position 301 appears to be predominantly a tetra-antennary complex glycan, as is the glycan at position 88, while most other complex glycans are biantennary (26, 128). (B) Schematic of essential steps of glycan biosynthesis from the Man9GlcNAc2 precursor to a mature multiantennary complex glycan. Mannosidase I progressively removes mannose moieties from the precursor, in a process that can be inhibited by the drug kifunensine. GnTI then transfers a GlcNAc moiety to the D1 arm of the resulting Man5GlcNAc2 intermediate, creating a hybrid glycan. Mannose trimming of the D2 and D3 arms then allows additional GlcNAc moieties to be added by a series of GnT family enzymes to form multiantennary complexes. This process can be inhibited by swainsonine. The antennae are ultimately capped and decorated by galactose and sialic acid. Hybrid and complex glycans are usually fucosylated at the basal GlcNAc, rendering them resistant to endo H digestion. However, NgF is able to remove all types of glycan.Carbohydrates provide a layer of protection against NAb attack (Fig. (Fig.1A).1A). As glycans are considered self, antibody responses against them are thought to be regulated by tolerance mechanisms. Thus, a glycan network forms a nonimmunogenic “cloak,” protecting the underlying protein from antibodies (3, 13, 20, 29, 39, 54, 65, 67, 74, 85, 96, 98, 117, 119, 120). The extent of this protection can be illustrated by considering the ways in which glycans differ from typical amino acid side chains. First, N-linked glycans are much larger, with an average mass more than 20 times that of a typical amino acid R-group. They are also usually more flexible and may therefore affect a greater volume of surrounding space. In the more densely populated parts of gp120, the carbohydrate field may even be stabilized by sugar-sugar hydrogen bonds, providing even greater coverage (18, 75, 125).The process of N-linked glycosylation can result in diverse structures that may be divided into three categories: oligomannose, hybrid, and complex (56). Each category shares a common Man3GlcNAc2 pentasaccharide stem (where Man is mannose and GlcNAc is N-acetylglucosamine), to which up to six mannose residues are attached in oligomannose N-glycans, while complex N-glycans are usually larger and may bear various sizes and numbers of antennae (Fig. (Fig.1B).1B). Glycan synthesis begins in the endoplasmic reticulum, where N-linked oligomannose precursors (Glc3Man9GlcNAc2; Glc is glucose) are transferred cotranslationally to the free amide of the asparagine in a sequon Asn-X-Thr/Ser, where X is not Pro (40). Terminal glucose and mannose moieties are then trimmed to yield Man5GlcNAc2 (Fig. (Fig.1B).1B). Conversion to a hybrid glycan is then initiated by N-acetylglucosamine transferase I (GnTI), which transfers a GlcNAc moiety to the D1 arm of the Man5GlcNAc2 substrate (19) (Fig. (Fig.1B).1B). This hybrid glycoform is then a substrate for modification into complex glycans, in which the D2 and D3 arm mannose residues are replaced by complex antennae (19, 40, 56). Further enzymatic action catalyzes the addition of α-1-6-linked fucose moiety to the lower GlcNAc of complex glycan stems, but usually not to oligomannose glycan stems (Fig. (Fig.1B)1B) (21, 113).Most glycoproteins exhibit only fully mature complex glycans. However, the steric limitations imposed by the high density of glycans on some parts of gp120 lead to incomplete trimming, leaving “immature” oligomannose glycans (22, 26, 128). Spatial competition between neighboring sequons can sometimes lead to one or the other remaining unutilized, further distancing the final Env product from what might be expected based on its primary sequence (42, 48, 74, 119). An attempt to assign JR-FL gp120 and gp41 sequon use and types, based on various studies, is shown in Fig. Fig.1A1A (6, 26, 34, 35, 42, 63, 71, 74, 119, 128). At some positions, the glycan type is conserved. For example, the glycan at residue N301 has consistently been found to be complex (26, 63, 128). At other positions, considerable heterogeneity exists in the glycan populations, in some cases to the point where it is difficult to unequivocally assign them as predominantly complex or oligomannose. The reasons for these uncertainties might include incomplete trimming (42), interstrain sequence variability, the form of Env (e.g., gp120 or gp140), and the producer cell. The glycans of native Env trimers and monomeric gp120 may differ due to the constraints imposed by oligomerization (32, 41, 77). Thus, although all the potential sequons of HXB2 gp120 were found to be occupied in one study (63), some are unutilized or variably utilized on functional trimers, presumably due to steric limitations (42, 48, 75, 96, 119).The distribution of complex and oligomannose glycans on gp120 largely conforms with an antigenic map derived from structural models (59, 60, 102, 120), in which the outer domain is divided into a neutralizing face and an immunologically silent face. Oligomannose glycans cluster tightly on the silent face of gp120 (18, 128), while complex glycans flank the gp120 receptor binding sites of the neutralizing face, ostensibly forming a protective “fence” against NAbs (105). The relatively sparse clustering of complex glycans that form this fence may reflect a trade-off between protecting the underlying functional domains from NAbs by virtue of large antennae while at the same time permitting sufficient flexibility for the refolding events associated with receptor binding and fusion (29, 39, 67, 75, 98, 117). Conversely, the dense clustering of oligomannose glycans on the silent domain may be important for ensuring immune protection and/or in creating binding sites for lectins such as DC-SIGN (9, 44).The few available broadly neutralizing monoclonal antibodies (MAbs) define sites of vulnerability on Env trimers (reviewed in reference 52). They appear to fall into two general categories: those that access conserved sites by overcoming Env''s various evasion strategies and, intriguingly, those that exploit these very defensive mechanisms. Regarding the first category, MAb b12 recognizes an epitope that overlaps the CD4 binding site of gp120 (14), and MAbs 2F5 and 4E10 (84, 129) recognize adjacent epitopes of the membrane-proximal external region (MPER) at the C-terminal ectodomain of gp41. The variable neutralizing potencies of these MAbs against primary isolates that contain their core epitopes illustrate how conformational masking can dramatically regulate their exposure (11, 118). Conformational masking also limits the activities of MAbs directed to the V3 loop and MAbs whose epitopes overlap the coreceptor binding site (11, 62, 121).A second category of MAbs includes MAb 2G12, which recognizes a tight cluster of glycans in the silent domain of gp120 (16, 101, 103, 112). This epitope has recently sparked considerable interest in exploiting glycan clusters as possible carbohydrate-based vaccines (2, 15, 31, 70, 102, 116). Two recently described MAbs, PG9 and PG16 (L. M. Walker and D. R. Burton, unpublished data), also target epitopes regulated by the presence of glycans that involve conserved elements of the second and third variable loops and depend largely on the quaternary trimer structure and its in situ presentation on membranes. Their impressive breadth and potency may come from the fact that they target the very mechanisms (variable loops and glycans) that are generally thought to protect the virus from neutralization. Like 2G12, these epitopes are likely to be constitutively exposed and thus may not be subject to conformational masking (11, 118).The above findings reveal the importance of N-glycans both as a means of protection against neutralization as well as in directly contributing to unique neutralizing epitopes. Clearly, further studies on the nature and function of glycans in native Env trimers are warranted. Possible approaches may be divided into four categories, namely, (i) targeted mutation, (ii) enzymatic removal, (iii) expression in the presence of glycosylation inhibitors, and (iv) expression in mutant cell lines with engineered blocks in the glycosylation pathway. Much of the available information on the functional roles of glycans in HIV-1 and simian immunodeficiency virus (SIV) infection has come from the study of mutants that eliminate glycans either singly or in combination (20, 54, 66, 71, 74, 91, 95, 96). Most mutants of this type remain at least partially functional (74, 95, 96). In some cases these mutants have little effect on neutralization sensitivity, while in others they can lead to increased sensitivity to MAbs specific for the V3 loop and CD4 binding site (CD4bs) (54, 71, 72, 74, 106). In exceptional cases, increased sensitivity to MAbs targeting the coreceptor binding site and/or the gp41 MPER has been observed (54, 66, 72, 74).Of the remaining approaches for studying the roles of glycans, enzymatic removal is constrained by the extreme resistance of native Env trimers to many common glycosidases, contrasting with the relative sensitivity of soluble gp120 (67, 76, 101). Alternatively, drugs can be used to inhibit various stages of mammalian glycan biosynthesis. Notable examples are imino sugars, such as N-butyldeoxynojirimycin (NB-DNJ), that inhibit the early trimming of the glucose moieties from Glc3Man9GlcNAc2 precursors in the endoplasmic reticulum (28, 38, 51). Viruses produced in the presence of these drugs may fail to undergo proper gp160 processing or fusion (37, 51). Other classes of inhibitor include kifunensine and swainsonine, which, respectively, inhibit the trimming of the Man9GlcNAc2 precursor into Man5GlcNAc2 or inhibit the removal of remaining D2 and D3 arm mannoses from the hybrid glycans, thus preventing the construction of complex glycan antennae (Fig. (Fig.1B)1B) (17, 33, 76, 104, 119). Unlike NB-DNJ, viruses produced in the presence of these drugs remain infectious (36, 76, 79, 100).Yet another approach is to express virus in insect cells that can only modify proteins with paucimannose N-glycans (58). However, the inefficient gp120/gp41 processing by furin-like proteases in these cells prevents their utility in functional studies (123). Another option is provided by ricin-selected GnTI-deficient cell lines that cannot transfer GlcNAc onto the mannosidase-trimmed Man5GlcNAc2 substrate, preventing the formation of hybrid and complex carbohydrates (Fig. (Fig.1B)1B) (17, 32, 36, 94). This arrests glycan processing at a well-defined point, leading to the substitution of complex glycans with Man5GlcNAc2 rather than with the larger Man9GlcNAc2 precursors typically obtained with kifunensine treatment (17, 32, 33, 104). With this in mind, here we produced HIV-1 pseudoviruses in GnTI-deficient cells to investigate the role of complex glycan antennae in viral resistance neutralization. By replacing complex glycans with smaller Man5GlcNAc2 we can determine the effect of “lowering the glycan fence” that surrounds the receptor binding sites, compared to the above-mentioned studies of individual glycan deletion mutants, whose effects are analogous to removing a fence post. Furthermore, since oligomannose glycans are sensitive to certain enzymes, such as endoglycosidase H (endo H), we investigated the effect of dismantling the glycan fence on Env function and stability. Our results suggest that the antennae of complex glycans protect against certain specificities but that glycan stems regulate trimer conformation with often more dramatic consequences for neutralization sensitivity and in extreme cases, infectious function.  相似文献   

2.
3.
4.
The CaaX tetrapeptide motif typically directs three sequential posttranslational modifications, namely, isoprenylation, proteolysis, and carboxyl methylation. In all eukaryotic systems evaluated to date, two CaaX proteases (Rce1 and Ste24/Afc1) have been identified. Although the Trypanosoma brucei genome also encodes two putative CaaX proteases, the lack of detectable T. brucei Ste24 activity in trypanosome cell extracts has suggested that CaaX proteolytic activity within this organism is solely attributed to T. brucei Rce1 (J. R. Gillespie et al., Mol. Biochem. Parasitol. 153:115-124. 2007). In this study, we demonstrate that both T. brucei Rce1 and T. brucei Ste24 are enzymatically active when heterologously expressed in yeast. Using a-factor and GTPase reporters, we demonstrate that T. brucei Rce1 and T. brucei Ste24 possess partially overlapping specificities much like, but not identical to, their fungal and human counterparts. Of interest, a CaaX motif found on a trypanosomal Hsp40 protein was not cleaved by either T. brucei CaaX protease when examined in the context of the yeast a-factor reporter but was cleaved by both in the context of the Hsp40 protein itself when evaluated using an in vitro radiolabeling assay. We further demonstrate that T. brucei Rce1 is sensitive to small molecules previously identified as inhibitors of the yeast and human CaaX proteases and that a subset of these compounds disrupt T. brucei Rce1-dependent localization of our GTPase reporter in yeast. Together, our results suggest the conserved presence of two CaaX proteases in trypanosomatids, identify an Hsp40 protein as a substrate of both T. brucei CaaX proteases, support the potential use of small molecule CaaX protease inhibitors as tools for cell biological studies on the trafficking of CaaX proteins, and provide evidence that protein context influences T. brucei CaaX protease specificity.Certain isoprenylated proteins are synthesized as precursors having a highly degenerate C-terminal tetrapeptide CaaX motif (C, cysteine; a, aliphatic amino acid; X, one of several amino acids). This motif typically directs three posttranslational modifications that include covalent attachment of an isoprenoid lipid to the cysteine residue, followed by endoproteolytic removal of the terminal three residues (i.e., aaX), and lastly, carboxyl methyl esterification of the farnesylated cysteine (49, 50). Relevant examples of proteins subject to the above modifications, also referred to as CaaX proteins, include the Ras and Ras-related GTPases, Gγ subunits, prelamin A, members of the Hsp40 family of chaperones, and fungal mating pheromones.Isoprenylation of CaaX proteins is performed by either the farnesyltransferase (FTase) or the geranylgeranyl transferase I (GGTase I). The particular isoprenoid attached, C15 farnesyl or C20 geranylgeranyl, respectively, depends in part on the sequence of the CaaX motif (8, 26, 31). Proteolysis of isoprenylated intermediates is carried out by the otherwise unrelated Rce1p (Ras converting enzyme 1) and Ste24p (sterile mutant 24) enzymes, collectively referred to as CaaX proteases, which are integral membrane proteins residing within the endoplasmic reticulum (3, 40, 45). Studies to elucidate the specificities of the CaaX proteases have often involved reporters designed from biological substrates (e.g., Ras GTPases) (2, 3, 16, 21, 22, 24, 34). Although these studies suggest that isoprenylated CaaX tetrapeptides alone are sufficient for recognition as a substrate, insufficient evidence exists to assert whether this sequence contains all of the necessary information for substrate specificity. Reporters are typically cleaved by either Rce1p or Ste24p. The Saccharomyces cerevisiae a-factor mating pheromone is a rather unusual biological reporter since it is cleaved by both yeast CaaX proteases. Orthologs of the CaaX proteases from humans, worms, and plants can also cleave a-factor when heterologously expressed in yeast, thereby making a-factor a convenient reporter for comparative analyses of CaaX protease activities (3, 5, 6, 36). Where evaluated using the a-factor reporter, Rce1p and Ste24p display partially overlapping target specificity, and this is an expected property of CaaX proteases in all eukaryotic systems (5, 6, 36, 47). Unlike the isoprenylation and proteolysis steps, carboxyl methyl esterification exclusively relies on a single enzyme, the isoprenylcysteine carboxyl methyltransferase (ICMT) (23, 50). A farnesylated cysteine appears to be the sole recognition determinant of the endoplasmic reticulum-localized ICMT (10, 23, 38).Disruption of the posttranslational modifications associated with CaaX proteins is often perceived as an anticancer strategy because of the prominent role of CaaX proteins in cellular transformation (i.e., the Ras GTPases) (49). To date, the most advanced drug discovery efforts have focused on farnesyltransferase inhibitors (FTIs) (9, 53). Inhibitors of the CaaX proteases and ICMT are also being developed (1, 11, 28, 37, 39, 48). Disrupting CaaX protein modifications has therapeutic application to other diseases as well. The relief of prelamin A toxicity by FTIs is a well-documented example (51). Accumulation of the farnesylated but unproteolysed precursor of lamin A results in a progeroid phenotype in individuals lacking ZmpSte24 proteolytic activity. The treatment of parasitic disease is another area under investigation (13). A number of FTIs have been developed that inhibit protozoan FTases, and in vivo testing is a continued effort (15, 32). Although research is less advanced with respect to CaaX protease and ICMT inhibitors, RNA interference experiments on the bloodstream form of Trypanosoma brucei indicate that CaaX processing enzymes are required for viability and proliferation of the parasite (20).In the present study, we evaluated the enzymatic properties of the trypanosomal CaaX proteases. We establish through the use of a variety of in vivo and in vitro assays that T. brucei Rce1 and T. brucei Ste24 are active when heterologously expressed in S. cerevisiae and have partially overlapping substrate specificities. The assays rely on various reporters, specifically the yeast a-factor mating pheromone, a K-Ras4B-based fluorogenic peptide, a green fluorescent protein (GFP)-GTPase fusion, and a T. brucei Hsp40 protein. All but the GTPase reporter could be effectively cleaved by both T. brucei CaaX proteases. We also demonstrate that the trypanosomal CaaX proteases can be targeted for inhibition by small molecules both in vitro and when heterologously expressed in yeast, suggesting that the trypanosomal CaaX proteases may be attractive drug targets for pharmacological inhibition.  相似文献   

5.
The broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibody 2G12 targets the high-mannose cluster on the glycan shield of HIV-1. 2G12 has a unique VH domain-exchanged structure, with a multivalent binding surface that includes two primary glycan binding sites. The high-mannose cluster is an attractive target for HIV-1 vaccine design, but so far, no carbohydrate immunogen has elicited 2G12-like antibodies. Important questions remain as to how this domain exchange arose in 2G12 and how this unusual event conferred unexpected reactivity against the glycan shield of HIV-1. In order to address these questions, we generated a nondomain-exchanged variant of 2G12 to produce a conventional Y/T-shaped antibody through a single amino acid substitution (2G12 I19R) and showed that, as for the 2G12 wild type (2G12 WT), this antibody is able to recognize the same Manα1,2Man motif on recombinant gp120, Candida albicans, and synthetic glycoconjugates. However, the nondomain-exchanged variant of 2G12 is unable to bind the cluster of mannose moieties on the surface of HIV-1. Crystallographic analysis of 2G12 I19R in complex with Manα1,2Man revealed an adaptable hinge between VH and CH1 that enables the VH and VL domains to assemble in such a way that the configuration of the primary binding site and its interaction with disaccharide are remarkably similar in the nondomain-exchanged and domain-exchanged forms. Together with data that suggest that very few substitutions are required for domain exchange, the results suggest potential mechanisms for the evolution of domain-exchanged antibodies and immunization strategies for eliciting such antibodies.The broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) human monoclonal antibody 2G12 recognizes a highly conserved cluster of oligomannose residues on the glycan shield of the HIV-1 envelope glycoprotein gp120 (9, 10, 36, 39, 44, 45). The antibody binds terminal Manα1,2Man-linked sugars of high-mannose glycans (Man8-9GlcNAc2) with nanomolar affinity using a unique domain-exchanged structure in which the variable domains of the heavy chains swap to form a multivalent binding surface that includes two conventional antigen-combining sites and a third potential noncanonical binding site at the novel VH/VH′ interface (10). gp120 is one of the most heavily glycosylated proteins identified to date, with approximately 50% of its mass arising from host-derived N-linked glycans (24). These glycans play an important role in shielding the virus from the host immune system (34). Carbohydrates are generally poorly immunogenic, and the dense covering of glycans is often referred to as the “silent face” (52). The oligomannose glycans on gp120 in particular are closely packed, forming a tight cluster, and the unique domain-exchanged structure of 2G12 has been proposed as a means to recognize this cluster (10).The attraction of 2G12 as a template for HIV-1 vaccine design has recently been highlighted in a study that showed the antibody can protect macaques against simian-human immunodeficiency virus (SHIV) challenge at remarkably low serum neutralizing titers (18, 30, 43). When using 2G12 as a template for design of a carbohydrate immunogen, some important considerations must be taken into account. First, 2G12 is unusual in its specificity (targeting host cell-derived glycan motifs presented in a “nonself” arrangement), and although the 2G12 epitope is common to many HIV-1 envelopes, 2G12-like antibodies are rarely elicited (5, 38). Second, due to inherently weak carbohydrate-protein interactions (49, 50), it can be assumed that in order for a carbohydrate-specific antibody to achieve the affinity required to neutralize HIV-1, the avidity of the interaction must be enhanced by both Fab arms of the IgG-contacting glycan motifs simultaneously on the HIV-1 envelope. Third, the unique domain-exchanged structure of 2G12 has not been described for any other antibody (10). These considerations raise a number of questions. Which antigen or sequence of antigens elicited 2G12? Is domain exchange the only solution for recognition of highly clustered oligomannoses? If so, can domain exchange be elicited by immunization with clustered oligomannose motifs (38)?Efforts to design immunogens that elicit responses to the glycan shield of HIV-1 and neutralize the virus have to date been unsuccessful (2, 3, 14, 20, 21, 28, 29, 32, 46-48). Immunogen design strategies that mimic the 2G12 epitope have focused on both chemical and biochemical methods to generate multivalent and clustered displays of both high-mannose sugars (Man8-9GlcNAc2) (13, 15, 20, 21, 27-29, 32, 47) and truncated versions of such sugars (Man9 and Man4 linked via a 5-carbon linker) (3, 46). These constructs typically bind 2G12 with a lower affinity (on the order of 1 to 3 logs) than recombinant gp120. Although mannose-specific antibodies have been elicited by these immunogens, no HIV-1-neutralizing activities have been described. In a study by Luallen et al., antibodies against recombinant gp120 were generated by immunization with yeast cells that had been mutated to display only Man8GlcNAc2 glycans (27, 29). However, no neutralization activity against the corresponding pseudovirus was noted. It was proposed that this was due to either the low abundance of the gp120-specific antibodies in the serum or the antibodies elicited being against carbohydrate epitopes that differed from the 2G12 epitope (27, 29).To gain a better understanding of the importance of domain exchange for glycan recognition and how 2G12 may have been induced, we analyzed the binding characteristics of a nondomain-exchanged (conventional Y/T-shaped) 2G12 variant antibody. This variant was generated by a single point mutation, I19R, that disrupts the VH/VH′ interface. We show that the mutant is still able to recognize the Manα1,2Man motif arrayed on yeast, synthetic glycoconjugates, and recombinant gp120 in enzyme-linked immunosorbent assay (ELISA) format but is unable to recognize the discrete, dense mannose clusters found on the surface of the HIV-1 envelope (as measured by neutralization activity and binding to HIV-1-transfected cells). We further show that a major conformational change in the elbow region between VH and CH1 in this nondomain-exchanged variant of 2G12 allows the variable domains to assemble in similar orientations with respect to each other, as in the 2G12 wild type (WT), with an identical primary binding site, although with dramatically different orientations with respect to the constant domains. Thus, we conclude that 2G12 recognizes Manα1,2Man motifs in an identical manner in both conventional and domain-exchanged configurations, and the 2G12 specificity for Manα1,2Man likely first arose in a conventional IgG predecessor of 2G12. Subsequent domain exchange was the key event that then enabled high-affinity recognition of the tight oligomannose clusters on HIV-1.  相似文献   

6.
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB3H4 labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB3H4 labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.The tsetse fly-transmitted protozoan parasite Trypanosoma brucei causes human sleeping sickness and the cattle disease Nagana in sub-Saharan Africa. The organism undergoes a complex life cycle between the mammalian host and the insect, tsetse, vector. The bloodstream form of the parasite expresses a dense monolayer of glycosylphosphatidylinositol (GPI)- anchored variant surface glycoprotein dimers and avoids specific immune responses through antigenic variation (32, 47). Following ingestion in a blood meal, the parasites differentiate into procyclic-form parasites that colonize the tsetse midgut. The procyclic trypanosomes express a radically different cell surface coat that includes about 3 × 106 procyclin glycoproteins (28, 36, 37) and about 1 × 106 poly-N-acetyllactosamine-containing free GPIs (19, 29, 39, 55). The procyclins are polyanionic, rod-like (38, 50) proteins encoded by procyclin genes. In T. brucei strain 427, used in this study, the parasites contain (per diploid genome) two copies of the GPEET1 gene, encoding 6 Gly-Pro-Glu-Glu-Thr repeats; one copy each of the EP1-1 and EP1-2 genes, encoding EP1 procyclins with 30 and 25 Glu-Pro repeats, respectively; two copies of the EP2-1 gene, encoding EP2 procyclin with 25 Glu-Pro repeats; and two copies of the EP3-1 gene, encoding EP3 procyclin with 22 Glu-Pro repeats (1). The EP1 and EP3 procyclins contain a single N-glycosylation site, occupied exclusively by a conventional Man5GlcNAc2 oligosaccharide, at the N-terminal side of the Glu-Pro repeat domain (1, 50). Whereas neither EP2 nor GPEET procyclin is N-glycosylated, GPEET1 procyclin is phosphorylated on six out of seven Thr residues (25). In culture, the procyclin expression profile depends on the carbon source (56) and metabolic state of the cells (27), and in the tsetse fly, there appears to be a program of procyclin expression such that GPEET procyclin is expressed early, giving way to EP1 and EP3 procyclin expression (2, 54). GPEET and EP procyclins contain similar GPI membrane anchors. These are based on the ubiquitous ethanolamine-P-6Manα1-2Manα1-6Manα1-4GlcNα1-6PI core (where, in this case, the PI lipid is a 2-O-acyl-myo-inositol-1-P-sn-2-lyso-1-O-acylglycerol structure [50]), but they also contain the largest and most complex known GPI side chains. These side chains are large poly-disperse-branched poly-N-acetyllactosamine structures (with an average of about 8 to 12 repeats, depending on the preparation) that can terminate with α2- and α3-linked sialic acid residues (9, 50). Sialic acid is transferred from serum sialoglycoconjugates to terminal β-galactosidase residues by the action of a cell surface GPI-anchored trans-sialidase enzyme (7, 26, 34). The trans-sialylation of surface components plays a role in the successful colonization of the tsetse fly (29). In vivo, the N termini of the procyclins are removed by tsetse fly gut proteases (2), though the role of this event is unclear (20) and it is thought that the underlying (protease-resistant) anionic repeat units and associated GPI anchor side chains might protect the parasite from the approach of tsetse fly gut hydrolases (2).The cell surface architecture of procyclic trypanosomes has been manipulated by the gene knockout of the procyclin genes themselves (55, 57), by galactose starvation (39), and by the knockout or knockdown of genes encoding enzymes of the GPI biosynthetic pathway, i.e., TbGPI10, TbGPI8, and TbGPI12 (11, 19, 29, 30). The procyclin TbGPI10 and TbGPI8 knockouts all resulted in parasites devoid of GPI-anchored procyclins, but this was compensated for by an upregulation in free GPI expression. However, the TbGPI12 null mutants that cannot synthesize GPI structures beyond GlcNAc-PI, revealed the presence of previously unidentified non-GPI-anchored surface coat components. In this paper, we characterize the fate of non-GPI-anchored procyclin protein and characterize the non-GPI-anchored surface coat components.  相似文献   

7.
8.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

9.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

10.
Newly designed primers for [Fe-Fe]-hydrogenases indicated that (i) fermenters, acetogens, and undefined species in a fen harbor hitherto unknown hydrogenases and (ii) Clostridium- and Thermosinus-related primary fermenters, as well as secondary fermenters related to sulfate or iron reducers might be responsible for hydrogen production in the fen. Comparative analysis of [Fe-Fe]-hydrogenase and 16S rRNA gene-based phylogenies indicated the presence of homologous multiple hydrogenases per organism and inconsistencies between 16S rRNA gene- and [Fe-Fe]-hydrogenase-based phylogenies, necessitating appropriate qualification of [Fe-Fe]-hydrogenase gene data for diversity analyses.Molecular hydrogen (H2) is important in intermediary ecosystem metabolism (i.e., processes that link input to output) in wetlands (7, 11, 12, 33) and other anoxic habitats like sewage sludges (34) and the intestinal tracts of animals (9, 37). H2-producing fermenters have been postulated to form trophic links to H2-consuming methanogens, acetogens (i.e., organisms capable of using the acetyl-coenzyme A [CoA] pathway for acetate synthesis) (7), Fe(III) reducers (17), and sulfate reducers in a well-studied moderately acidic fen in Germany (11, 12, 16, 18, 22, 33). 16S rRNA gene analysis revealed the presence of Clostridium spp. and Syntrophobacter spp., which represent possible primary and secondary fermenters, as well as H2 producers in this fen (11, 18, 33). However, H2-producing bacteria are polyphyletic (30, 31, 29). Thus, a structural marker gene is required to target this functional group by molecular methods. [Fe-Fe]-hydrogenases catalyze H2 production in fermenters (19, 25, 29, 30, 31), and genes encoding [Fe-Fe]-hydrogenases represent such a marker gene. The objectives of this study were to (i) develop primers specific for highly diverse [Fe-Fe]-hydrogenase genes, (ii) analyze [Fe-Fe]-hydrogenase genes in pure cultures of fermenters, acetogens, and a sulfate reducer, (iii) assess [Fe-Fe]-hydrogenase gene diversity in H2-producing fen soil enrichments, and (iv) evaluate the limitations of the amplified [Fe-Fe]-hydrogenase fragment as a phylogenetic marker.  相似文献   

11.
12.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

13.
14.
15.
16.
17.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

18.
Halogenases have been shown to play a significant role in biosynthesis and introducing the bioactivity of many halogenated secondary metabolites. In this study, 54 reduced flavin adenine dinucleotide (FADH2)-dependent halogenase gene-positive strains were identified after the PCR screening of a large collection of 228 reference strains encompassing all major families and genera of filamentous actinomycetes. The wide distribution of this gene was observed to extend to some rare lineages with higher occurrences and large sequence diversity. Subsequent phylogenetic analyses revealed that strains containing highly homologous halogenases tended to produce halometabolites with similar structures, and halogenase genes are likely to propagate by horizontal gene transfer as well as vertical inheritance within actinomycetes. Higher percentages of halogenase gene-positive strains than those of halogenase gene-negative ones contained polyketide synthase genes and/or nonribosomal peptide synthetase genes or displayed antimicrobial activities in the tests applied, indicating their genetic and physiological potentials for producing secondary metabolites. The robustness of this halogenase gene screening strategy for the discovery of particular biosynthetic gene clusters in rare actinomycetes besides streptomycetes was further supported by genome-walking analysis. The described distribution and phylogenetic implications of the FADH2-dependent halogenase gene present a guide for strain selection in the search for novel organohalogen compounds from actinomycetes.It is well known that actinomycetes, notably filamentous actinomycetes, have a remarkable capacity to produce bioactive molecules for drug development (4, 6). However, novel technologies are demanded for the discovery of new bioactive secondary metabolites from these microbes to meet the urgent medical need for drug candidates (5, 9, 31).Genome mining recently has been used to search for new drug leads (7, 20, 42, 51). Based on the hypothesis that secondary metabolites with similar structures are biosynthesized by gene clusters that harbor certain homologous genes, such homologous genes could serve as suitable markers for distinct natural-product gene clusters (26, 51). A wide range of structurally diverse bioactive compounds are synthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) systems in actinomycetes, therefore much attention has been given to revealing a previously unrecognized biosynthetic potential of actinomycetes through the genome mining of these genes (2, 3, 22). However, the broad distribution of PKS and NRPS genes and their high numbers even in a single actinomycete complicate their use (2, 3). To rationally exploit the genetic potential of actinomycetes, more and more special genes, such as tailoring enzyme genes, are being utilized for this sequence-guided genetic screening strategy (20, 38).Tailoring enzymes, which are responsible for the introduction and generation of diversity and bioactivity in several structural classes during or after NRPS, PKS, or NRPS/PKS assembly lines, usually include acyltransferases, aminotransferases, cyclases, glycosyltransferases, halogenases, ketoreductases, methyltransferases, and oxygenases (36, 45). Halogenation, an important feature for the bioactivity of a large number of distinct natural products (16, 18, 30), frequently is introduced by one type of halogenase, called reduced flavin adenine dinucleotide (FADH2)-dependent (or flavin-dependent) halogenase (10, 12, 35). More than 4,000 halometabolites have been discovered (15), including commercially important antibiotics such as chloramphenicol, vancomycin, and teicoplanin (43).Previous investigations of FADH2-dependent halogenase genes were focused largely on related gene clusters in the genera Amycolatopsis (33, 44, 53) and Streptomyces (8, 10, 21, 27, 32, 34, 47-49) and also on those in the genera Actinoplanes (25), Actinosynnema (50), Micromonospora (1), and Nonomuraea (39); however, none of these studies has led to the rest of the major families and genera of actinomycetes. In addition, there is evidence that FADH2-dependent halogenase genes of streptomycetes usually exist in halometabolite biosynthetic gene clusters (20), but we lack knowledge of such genes and clusters in other actinomycetes.In the present study, we show that the distribution of the FADH2-dependent halogenase gene in filamentous actinomycetes does indeed correlate with the potential for halometabolite production based on other genetic or physiological factors. We also showed that genome walking near the halogenase gene locus could be employed to identify closely linked gene clusters that likely encode pathways for organohalogen compound production in actinomycetes other than streptomycetes.  相似文献   

19.
20.
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.Animals, fungi, and plants synthesize Asn-linked glycans (N-glycans) by means of a lipid-linked precursor containing 14 sugars (dolichol-PP-Glc3Man9GlcNAc2) (26). Recently we used bioinformatics and experimental methods to show that numerous protists are missing sets of glycosyltransferases (Alg1 to Alg14) and so make truncated N-glycan precursors containing 0 to 11 sugars (46). For example, Entamoeba histolytica, which causes dysentery, makes N-glycan precursors that contain seven sugars (Man5GlcNAc2) (33). Giardia lamblia, a cause of diarrhea, makes N-glycan precursors that contain just GlcNAc2 (41). N-glycan precursors may be identified by metabolic labeling with radiolabeled mannose (Entamoeba) or glucosamine (Giardia) (46). Unprocessed N-glycans of each protist may be recognized by wheat germ agglutinin 1 (WGA-1) (GlcNAc2 of Giardia) or by the antiretroviral lectin cyanovirin-N (Man5GlcNAc2 of Entamoeba) (2, 33, 41).N-glycans are transferred from lipid-linked precursors to sequons (Asn-Xaa-Ser or Asn-Xaa-Thr, where Xaa cannot be Pro) on nascent peptides by an oligosaccharyltransferase (OST) (28). For the most part, transfer of N-glycans by the OST is during translocation, although there are human and Trypanosoma OSTs that transfer N-glycans after translocation (34, 45).N-glycan-dependent quality control (QC) systems for protein folding and endoplasmic reticulum (ER)-associated degradation (ERAD), which are present in most eukaryotes, are missing from Giardia and a few other protists that make truncated N-glycans (5, 26, 53). There is positive Darwinian selection for sequons (sites of N-glycans) that contain Thr in secreted and membrane proteins of organisms that have N-glycan-dependent QC (12). This selection occurs for the most part by an increased probability that Asn and Thr will be present in sequons rather than elsewhere in secreted and membrane proteins. In contrast, there is no selection on sequons that contain Ser, and there is no selection on sequons in the secreted proteins of organisms that lack N-glycan-dependent QC.For numerous reasons, we are interested in the N-glycans of Plasmodium falciparum and Toxoplasma gondii, which cause severe malaria and disseminated infections, respectively.(i) There has been controversy for a long time as to whether Plasmodium makes N-glycans. While some investigators identified a 14-sugar Plasmodium N-glycan resembling that of the human host (29), others identified no N-glycans (6, 22).(ii) There is also controversy concerning whether the N-glycans of Toxoplasma, after removal of Glc by glucosidases in the ER lumen, contain either 7 sugars (Man5GlcNAc2), like Entamoeba (32, 33), or 11 sugars (Man9GlcNAc2), like the human host (16, 19, 26). If it is Man5GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan predicted by its set of Alg enzymes (32, 46). If it is Man9GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan of the host cell (16, 19, 26).(iii) Both Plasmodium and Toxoplasma are missing proteins involved in N-glycan-dependent QC of protein folding (5).(iv) We hypothesize that there may be negative selection against N-glycans in Plasmodium and Toxoplasma, because the N-glycans added in the ER lumen during translocation will likely interfere with threading of nucleus-encoded apicoplast proteins into a nonphotosynthetic, chloroplast-derived organelle called the apicoplast (21, 35, 37, 48, 52, 54). Nucleus-encoded apicoplast proteins have a bipartite signal at the N terminus, which targets proteins first to the lumen of the ER and second to lumen of the apicoplast. This bipartite signal has been used in transformed plasmodia where green fluorescent protein (GFP) is targeted to the apicoplast with the bipartite signal of the acyl carrier protein (ACPleader-GFP), to the secretory system with the signal sequence only (ACPsignal-GFP), and to the cytosol with the organelle-targeting transit peptide only (ACPtransit-GFP) (55). Similar constructs have been used to characterize signals that target nucleus-encoded proteins of Toxoplasma to the apicoplast (11, 25).Here we use a combination of bioinformatic, biochemical, and morphological methods to characterize the N-glycans of Plasmodium and Toxoplasma and to test our hypothesis that there is negative selection against N-glycans in protists with apicoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号