首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Many animal species display striking color differences with respect to geographic location, sex, and body region. Traditional adaptive explanations for such complex patterns invoke an interaction between selection for conspicuous signals and natural selection for crypsis. Although there is now a substantial body of evidence supporting the role of sexual selection for signaling functions, quantitative studies of crypsis remain comparatively rare. Here, we combine objective measures of coloration with information on predator visual sensitivities to study the role of crypsis in the evolution of color variation in an Australian lizard species complex (Ctenophorus decresii). We apply a model that allows us to quantify crypsis in terms of the visual contrast of the lizards against their natural backgrounds, as perceived by potential avian predators. We then use these quantitative estimates of crypsis to answer the following questions. Are there significant differences in crypsis conspicuousness among populations? Are there significant differences in crypsis conspicuousness between the sexes? Are body regions “exposed” to visual predators more cryptic than “hidden” body regions? Is there evidence for local adaptation with respect to crypsis against different substrates? In general, our results confirmed that there are real differences in crypsis conspicuousness both between populations and between sexes; that exposed body regions were significantly more cryptic than hidden ones, particularly in females; and that females, but not males, are more cryptic against their own local background than against the background of other populations. Body regions that varied most in contrast between the sexes and between populations were also most conspicuous and are emphasized by males during social and sexual signaling. However, results varied with respect to the aspect of coloration studied. Results based on chromatic contrast (“hue’ of color) provided better support for the crypsis hypothesis than did results based on achromatic contrast (“brightness’ of color). Taken together, these results support the view that crypsis plays a substantial role in the evolution of color variation and that color patterns represent a balance between the need for conspicuousness for signaling and the need for crypsis to avoid predation.  相似文献   

2.
ABSTRACT The value of egg coloration as crypsis, once accepted as a general principle, has recently been questioned because most experiments have failed to show that egg coloration deters predation. The nest‐crypsis hypothesis postulates that, among species that build conspicuous nests, selection for egg crypsis is relaxed or absent because visually searching predators detect nests prior to eggs. I tested the nest‐crypsis hypothesis using the large, relatively conspicuous nests of American Robins (Turdus migratorius), and eggs that differed markedly in color that were collected from the nests of Red‐winged Blackbirds (Agelaius phoeniceus), Brewer's Blackbirds (Euphagus cyanocephalus), and Yellow‐headed Blackbirds (Xanthocephalus xanthocephalus). Each nest (N= 22) received a clutch of each species during three sequential predation trials that were 16 d in duration. The order of clutch presentation was randomized for each nest. Survival trends for Brewer's and Yellow‐headed Blackbirds were similar, and higher than those for clutches of Red‐winged Blackbirds. By the end of trials, overall survival of the three clutch types was roughly equivalent. However, clutches of Red‐winged Blackbird eggs, the most conspicuous egg type to the human eye, were discovered sooner by predators. Because the experimental design controlled for effects of nest crypsis, nest location, and nest size, this difference in egg survival can be attributed to differences in egg pigmentation. Thus, my results support a role for egg coloration as camouflage in conspicuous nests.  相似文献   

3.
Many organisms appear to mimic inanimate objects such as twigs, leaves, stones, and bird droppings. Such adaptations are considered to have evolved because their bearers are misidentified as either inedible objects by their predators, or as innocuous objects by their prey. In the past, this phenomenon has been classified by some as Batesian mimicry and by others as crypsis, but now is considered to be conceptually different from both, and has been termed ‘masquerade’. Despite the debate over how to classify masquerade, this phenomenon has received little attention from evolutionary biologists. Here, we discuss the limited empirical evidence supporting the idea that masquerade functions to cause misidentification of organisms, provide a testable definition of masquerade, and suggest how masquerade evolved and under what ecological conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 1–8.  相似文献   

4.
Although outdated opinions about poor avian olfaction have largely disappeared in recent decades, there has been inadequate attention paid to olfaction of other organisms that interact with birds and their nests. In particular, olfaction is likely more important than vision for many biting arthropods and for many reptilian, mammalian, and likely even some bird predators of nests (e.g. some procellariiforms, piciforms, and corvids), but crypsis (or attractiveness) of nest odors has largely been ignored in the literature. Given the pivotal importance of nest success to a bird's fitness, there has likely been strong selection to conceal inadvertent cues to nest locations, including odors. Here, I summarize what is known about this, and discuss a few important topics I deem worthy of deeper investigation.  相似文献   

5.
Progressive background in moths, and a quantitative measure of crypsis   总被引:1,自引:0,他引:1  
A method is presented for quantitative estimation of the degree of crypsis of species seen by visual predators against known backgrounds. It is based upon a comparison between transects taken across animal and background colour patterns. The method was applied to day-resting moths in deciduous forest in New Jersey. Each species is found for two to four weeks at characteristic dates, and there is a constant turnover of species. In both moths and backgrounds there is a regular change in the colour pattern parameters from winter through spring to early summer. Moths are on average more cryptic at their normal dates than they would be if present earlier or later in the year. Species with known resting sites are on average more cryptic on their resting sites than other background habitats. Species that rest on more than one background habitat are less cryptic on their preferred habitats than are specialists. Species that rest under leaves and are not visible from above are not very cryptic. Specific v. general resemblance, disruptive coloration, and factors affecting 'aspect diversity' are discussed. The new method of estimating crypsis is useful for studies of crypsis as well as in sexual selection. It is necessary to know much about the resting sites and behaviour of moths, as well as other functions of colour patterns, to understand colour pattern evolution.  相似文献   

6.
Defensive coloration that reduces the risk of predation is considered to be widespread in animals. Many closely related species adopt differing coloration strategies during the life cycle, including crypsis, conspicuousness, and ontogenic change between the two coloration types. Here, we use a dynamic state-dependent approach to use ecological and intrinsic factors to predict the proportion of the developmental period of immature animals that should be spent as cryptic or conspicuous, and when conspicuous coloration should be reliably associated with investment in defenses. The model predicts that animals should change color more than once during development only in specific circumstances. In contrast, change from crypsis to conspicuous can occur over a range of conditions related to the frequency of detection by predators, but may also depend on the opportunity costs of crypsis and the effect of size on the deterrent effect of conspicuous coloration. We also report the results of a survey of coloration strategies in lepidopteron larvae, and note a qualitative agreement with the predictions of our model in the relationship between body size and coloration strategy. Our results provide explanations for several widespread antipredator coloration phenomena in prey animals, and provide a comprehensive predictive framework for the types of coloration strategies that are employed in nature.  相似文献   

7.
Organisms capable of rapid physiological colour change have become model taxa in the study of camouflage because they are able to respond dynamically to the changes in their visual environment. Here, we briefly review the ways in which studies of colour changing organisms have contributed to our understanding of camouflage and highlight some unique opportunities they present. First, from a proximate perspective, comparison of visual cues triggering camouflage responses and the visual perception mechanisms involved can provide insight into general visual processing rules. Second, colour changing animals can potentially tailor their camouflage response not only to different backgrounds but also to multiple predators with different visual capabilities. We present new data showing that such facultative crypsis may be widespread in at least one group, the dwarf chameleons. From an ultimate perspective, we argue that colour changing organisms are ideally suited to experimental and comparative studies of evolutionary interactions between the three primary functions of animal colour patterns: camouflage; communication; and thermoregulation.  相似文献   

8.
In heterogeneous habitats, camouflage via background matching can be challenging because visual characteristics can vary dramatically across small spatial scales. Additionally, temporal variation in signaling functions of coloration can affect crypsis, especially when animals use coloration seasonally for intraspecific signaling (e.g., mate selection). We currently have a poor understanding of how wild prey optimize background matching within continuously heterogeneous habitats, and whether this is affected by requirements of intraspecific signaling across biological seasons. Here, we quantified color patterns of a wild population of shore skink (Oligosoma smithi), a variably colored lizard endemic to New Zealand, to (a) investigate whether background matching varies across a vegetation gradient; (b) assess potential signaling functions of color; and (c) to determine whether there is a trade‐off between requirements for crypsis and intraspecific signaling in coloration across seasons. Although all pattern types occurred throughout the vegetation gradient, we found evidence for background matching in skinks across the vegetation gradient, where dorsal brightness and pattern complexity corresponded with the proportion of vegetation cover. There was also a significant disparity between ventral color (saturation) of juveniles and adults, and also between sexes, suggestive of sex recognition. However, there was little indication that color was condition‐dependent in adults. Despite some evidence for a potential role in signaling, crypsis did not greatly differ across seasons. Our study suggests that selection favors a mix of generalist and specialist background matching strategies across continuously heterogeneous habitats.  相似文献   

9.
Potential prey are often exposed to multiple predators that vary in their foraging tactics and ability to detect prey. For animals that rely on crypsis to avoid predators, one solution is to alter their behaviour or appearance to maximize crypsis in ways that are specific to different types of predator. We tested whether dwarf chameleons ( Bradypodion transvaalense ) showed different behavioural responses, including colour change, towards multiple predators (bird and snake models) that detect and capture prey in different ways, and whether these antipredator responses varied geographically. Chameleons consistently used the same body postures (lateral compression and flipping to the opposite side of the branch) and displayed similar chromatic (colour) contrast against the natural background in response to both predator types. However, they became significantly more achromatically contrasting (brighter) in the presence of the snake compared to the bird. This relative difference in achromatic contrast towards the two types of predator was consistent among populations. There were also significant differences in both absolute achromatic and chromatic contrast among populations despite very similar light environment, background coloration and habitat structure. Our results highlight facultative crypsis as one type of flexible antipredator tactic and emphasize the importance of visual ecology in understanding prey–predator interactions.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 437–446.  相似文献   

10.
We describe a massive polymorphism for shell colour and pattern in Donacilla cornea , a shallow-burrowing bivalve which inhabits the mid-littoral of sandy and stony beaches in southern and western Europe. Of the four sites studied, the one where the substrate was a mixture of small stones and sand contained the highest densities of Donacilla. At this site the densities of stones and animals and the frequencies of shell and stone colour phenotypes are both highly correlated. Although the four populations sampled comprise a similar range of phenotypes, the frequencies of most morphs and population diversity indices differ significantly between sites. At two sites the similar range of colour and pattern variation between shells and substrate suggests selection for crypsis and masquerade. On the other hand, at two other sites, one or two common phenotypes (and a number of rare ones at all sites) fail to mimic any aspect of the background. We therefore suggest that if frequency-dependent selection by predators is responsible for the maintenance of polymorphism in Donacilla , then the mechanisms involved include crypsis and masquerade in some cases and selective advantages from being different in others.  相似文献   

11.
Interspecific arms races between cuckoos and their hosts have produced remarkable examples of mimicry, with parasite eggs evolving to match host egg appearance and so evade removal by hosts. Certain bronze-cuckoo species, however, lay eggs that are cryptic rather than mimetic. These eggs are coated in a low luminance pigment that camouflages them within the dark interiors of hosts'' nests. We investigated whether cuckoo egg crypsis is likely to have arisen from the same coevolutionary processes known to favour egg mimicry. We added high and low luminance-painted eggs to the nests of large-billed gerygones (Gerygone magnirostris), a host of the little bronze-cuckoo (Chalcites minutillus). Gerygones rarely rejected either egg type, and did not reject natural cuckoo eggs. Cuckoos, by contrast, regularly removed an egg from clutches before laying their own and were five times more likely to remove a high luminance model than its low luminance counterpart. Given that we found one-third of all parasitized nests were exploited by multiple cuckoos, our results suggest that competition between cuckoos has been the key selective agent for egg crypsis. In such intraspecific arms races, crypsis may be favoured over mimicry because it can reduce the risk of egg removal to levels below chance.  相似文献   

12.
Countershading is a gradient of colouration in which the illuminated dorsal surfaces are darker than the unilluminated ventral surface. It is widespread in the animal kingdom and endows the body with a more uniform colour to decrease the chance of detection by predators. Although recent empirical studies support the theory of survival advantage conferred by countershading, this camouflage strategy has evolved only in some of the cryptic animals, and our understanding of the factors that affect the evolution of countershading is limited. This study examined the association between body size and countershading using lepidopteran larvae (caterpillars) as a model system. Specifically, we predicted that countershading may have selectively evolved in large-sized species among cryptic caterpillars if (1) large size constrains camouflage which facilitates the evolution of a trait reinforcing their crypsis and (2) the survival advantage of countershading is size-dependent. Phylogenetic analyses of four different lepidopteran families (Saturniidae, Sphingidae, Erebidae, and Geometridae) suggest equivocal results: countershading was more likely to be found in larger species in Saturniidae but not in the other families. The field predation experiment assuming avian predators did not support size-dependent predation in countershaded prey. Collectively, we found only weak evidence that body size is associated with countershading in caterpillars. Our results suggest that body size is not a universal factor that has shaped the interspecific variation in countershading observed in caterpillars.  相似文献   

13.
Variation in the sensory physiologies of organisms can bias the receptions of signals, driving the direction of signal evolution. Sensory drive in the evolution of signals may be particularly important for organisms that confront trade-offs in signal design between the need for conspicuousness to allow effective transfer of information and the need for crypsis of the signal to unintended receivers. Several genera of orb-weaving spiders include conspicuous silk designs, stabilimenta, in the centre of their webs. Stabilimenta can be highly visible signals to predators, warning them of the presence of a noxious, sticky silk web. However, stabilimenta can also be used by prey as a signal in avoidance of webs, creating a trade-off in signal visibility. I argue that the derived spectral properties of stabilimentum silk have resulted in part from this conflict. The innate colour preferences of insects, their ability to learn colours, and the spectral properties of flowers all suggest that the reflectance spectra of stabilimenta renders them relatively cryptic to many insect prey, while maintaining their visibility to vertebrate predators.  相似文献   

14.
Colour patterns, shape and behaviour are analysed in 22 species of aphidophagous syrphid larvae in relation to their possible role in defence against visually hunting predators. Crypsis is the most important method of primary defence. There is much variation in colour pattern. Some species are translucent, others green, brown or otherwise coloured. Most have disruptive stripes, bars or other markings that break up the body outline at short range. There is one example of a bird dropping resemblance. Behavioural requirements for effective crypsis include diurnal immobility, resting in sites that provide maximum concealment, and slow interrupted locomotion. Secondary defences are less variable and involve catalepsis, attack with saliva, and rolling and dropping from the plant.  相似文献   

15.
Insect‐fern interactions are not as well characterized as insect‐angiosperm interactions. For example, the imitation of unique fern structures by insects has not been observed. On a recent trip to Puerto Rico, we collected ferns that bore small Lepidoptera imitating fern sori. Herbarium specimen searches indicate that these Lepidoptera are restricted to the Caribbean on ferns with highly visible sporangia. A possible selective pressure for the evolution of lepidopteran soral crypsis is wasp parasitism, as evidence of parasitoid wasps was found. However, it is more likely that soral crypsis evolved to avoid visually oriented predators such as birds or lizards.  相似文献   

16.
Countershading, or dorsal pigmentary darkening (DPD), describes a form of vertically varying coloration, where an animal typically has a dark dorsal surface and a paler ventral side, and is widespread among mammals, birds, reptiles, fishes and insects. DPD is thought to confer concealment from predators and, in terrestrial systems, there is good evidence that the dark–light transition in body coloration acts to conceal the body's shadow. Surprisingly few studies of DPD have been conducted in aquatic environments, and thus it is not known whether the mechanisms of concealment are similar to those that operate in terrestrial habitats. In this study, we determined the role of the light environment and predation risk in determining DPD in wild‐caught populations of a freshwater fish, the western rainbowfish (Melanotaenia australis). We also examined the underlying mechanisms of DPD for concealment by testing the assumptions of background matching and self‐shadow concealment. In a subsequent experiment, we determined whether any observed variation in DPD was maintained when the visual background was manipulated in the laboratory (to induce a change in body coloration). We found that both the amount of downwelling irradiance and the level of predation risk at the collection site affected skin darkness (dorsal, ventral and overall), whereas the ratio of dorsoventral coloration (DPD) was not affected by the parameters considered. The laboratory experiment revealed that fish changed their body coloration to match their visual background, and did so by altering the relative ratio of dorsoventral skin darkness. In contrast with research on terrestrial animals, our findings suggest that the most likely method of achieving crypsis is through background matching, rather than self‐shadow concealment. It is thus possible that differences in the optical characteristics of terrestrial and aquatic environments, and/or variation in the angles at which prey are typically viewed and attacked, have resulted in divergent mechanisms of using DPD to attain crypsis. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 915–928.  相似文献   

17.
What, if anything, is the adaptive function of countershading?   总被引:1,自引:0,他引:1  
Countershading, the gradation of colour from dark on the dorsum to light on the ventrum, is generally considered to have the effect of making organisms difficult to detect. The mechanism that facilitates this form of crypsis is often considered to be concealment of shadows cast on the body of the animal. We review the current empirical evidence for the cryptic function of countershading and for the mechanism underlying it. We argue that there is no conclusive evidence that countershading per se provides any selective advantage in terrestrial or aerial environments. However, the highly refined adaptations of some marine organisms to match the different background light conditions against which they are set when viewed from different aspects strongly suggest an adaptive advantage to countershading in these environments. In none of the cases discussed in this review was the conventional explanation of self-shadow concealment a more plausible explanation for countershading than the alternative explanation that the dorsum and ventrum experience different selection pressures (often associated with background matching).  相似文献   

18.
There have been many different and conflicting definitions of mimicry. Some of the definitions of mimicry include crypsis and others do not. Each definition includes different groups of phenomena and uses different criteria to distinguish mimetic from non-mimetic phenomena. The confusion is eliminated by a consideration of the criteria of all definitions. This shows that there are in fact three major criteria dividing six phenomona, rather than a single dichotomy between mimicry and crypsis (Table 2). The criteria are defined by the results of a mistake in discrimination between the model and mimìc: (a) the mistake does or does not depend upon relationship between mimic and background; (b) the mistake has or has no effect on the population dynamics or evolution of the model and (c) the mistake affects dynamics or evolution of one or of many models. The main reason for the contusion about mimicry and crypsis is that each author's definition includes differing and partially overlapping subsets of the six classes: crypsis; masquerade; Batesism; Müllerism; polymorphism and convergence.  相似文献   

19.
Ecological specialization often requires tight coevolution of several traits, which may constrain future evolutionary pathways and make species more prone to extinction. Aposematism and crypsis represent two specialized adaptations to avoid predation. We tested whether the combined effects of color and pattern on prey conspicuousness functionally constrain or facilitate shifts between these two adaptations. We combined data from 17 natural populations of strawberry poison frogs, Oophaga pumilio with an experimental approach using digitalized images of frogs and chickens as predators. We show that bright coloration often co‐occurs with coarse patterning among the natural populations. Dull green frogs with coarse patterning are rare in nature but in the experiment they were as easily detected as bright red frogs suggesting that this trait combination represents a transient evolutionary state toward aposematism. Hence, a gain of either bright color or coarse patterning leads to conspicuousness, but a transition back to crypsis would be functionally constrained in populations with both bright color and coarse patterning by requiring simultaneous changes in two traits. Thus, populations (or species) signaling aposematism by conspicuous color should be less likely to face an evolutionary dead end and more likely to radiate than populations with both conspicuous color and coarse patterning.  相似文献   

20.
Masquerading animals benefit from the difficulty that predators have in differentiating them from the inedible objects, such as twigs, that they resemble. The function of masquerade has been demonstrated, but how it interacts with the life history of organisms has not yet been studied. Here, we report the use of comparative analyses to test hypotheses linking masquerade to life‐history parameters. We constructed a phylogenetic tree of the British species of the lepidoptera families Geometridae and Drepanidae, and compiled life history and coloration data from the literature. We found that masquerade is associated with the exploitation of a greater diversity of host plants whether measured by the number of families or genera. We found a positive relationship between body size and polyphagy among masquerading species, and no relationship among cryptic species. Among those species predominantly found on woody host plants, masquerading species are more likely to overwinter as larvae while cryptic species mostly overwinter as pupae. Polyphenism was associated with multivoltinism in masquerading species but not cryptic species. Taken together, our results show that masquerade must be viewed as a strategy distinct to crypsis and hence may provide insights into the evolution of both defensive strategies. Our study further demonstrates the utility of broad‐scale between‐species comparisons in studying associations between diverse life‐history parameters and sensory aspects of predator‐prey interactions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 90–103.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号