首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
G蛋白偶联受体激酶相互作用蛋白2(G protein-coupled receptor kinase interacting proteins 2,GIT2)是一种信号支架蛋白,可募集多种信号通路的关键分子,参与肌动蛋白细胞骨架组装、整合素介导的细胞粘附、G蛋白偶联受体的内化及胞内信号传递等生物学过程. 采用酵母双杂交实验证明,TGF-β1信号通路的转录因子Smad3是GIT2的相互作用蛋白质,内、外源免疫共沉淀实验均证实,GIT2与Smad3存在蛋白质相互作用. 报告基因实验及免疫印迹结果表明,GIT2增加Smad3的转录活性并增强TGF-β1诱导的Smad3的磷酸化.研究还发现,Git2-/-小鼠骨髓间充质干细胞(MSC)的Smad3磷酸化受到抑制,其骨形成相关靶基因的表达水平也低于Git2+/+小鼠. 本研究表明,GIT2通过与Smad3的相互作用调节其转录活性并活化TGF-β1信号通路,可能参与调节骨髓间充质干细胞的分化.  相似文献   

4.
Genetic studies of the nematode Caenorhabditis elegans (C. elegans) have identified several important components of the cell death pathway, most notably CED-3, CED-4, and CED-9. CED-4 directly interacts with the Bcl-2 homologue CED-9 (or the mammalian Bcl-2 family member Bcl-xL) and the caspase CED-3 (or the mammalian caspases ICE and FLICE). This trimolecular complex of CED-4, CED-3, and CED-9 is functional in that CED-9 inhibits CED-4 from activating CED-3 and thereby inhibits apoptosis in heterologous systems. The E1B 19,000-molecular weight protein (E1B 19K) is a potent apoptosis inhibitor and the adenovirus homologue of Bcl-2-related apoptosis inhibitors. Since E1B 19K and Bcl-xL have functional similarity, we determined if E1B 19K interacts with CED-4 and regulates CED-4-dependent caspase activation. Binding analysis indicated that E1B 19K interacts with CED-4 in a Saccharomyces cerevisiae two-hybrid assay, in vitro, and in mammalian cell lysates. The subcellular localization pattern of CED-4 was dramatically changed by E1B 19K, supporting the theory of a functional interaction between CED-4 and E1B 19K. Whereas expression of CED-4 alone could not induce cell death, coexpression of CED-4 and FLICE augmented cell death induction by FLICE, which was blocked by expression of E1B 19K. Even though E1B 19K did not prevent FLICE-induced apoptosis, it did inhibit CED-4-dependent, FLICE-mediated apoptosis, which suggested that CED-4 was required for E1B 19K to block FLICE activation. Thus, E1B 19K functions through interacting with CED-4, and presumably a mammalian homologue of CED-4, to inhibit caspase activation and apoptosis.  相似文献   

5.
6.
Proteomic identification of human papillomavirus type 16 (HPV16) E6-interacting proteins revealed several proteins involved in ubiquitin-mediated proteolysis. In addition to the well-characterized E6AP ubiquitin-protein ligase, a second HECT domain protein (HERC2) and a deubiquitylating enzyme (USP15) were identified by tandem affinity purification of HPV16 E6-associated proteins. This study focuses on the functional consequences of the interaction of E6 with USP15. Overexpression of USP15 resulted in increased levels of the E6 protein, and the small interfering RNA-mediated knockdown of USP15 decreased E6 protein levels. These results implicate USP15 directly in the regulation of E6 protein stability and suggest that ubiquitylated E6 could be a substrate for USP15 ubiquitin peptidase activity. It remains possible that E6 could affect the activity of USP15 on specific cellular substrates, a hypothesis that can be tested as more is learned about the substrates and pathways controlled by USP15.Human papillomaviruses (HPVs) are associated with several human cancers, most notably human cervical cancer, the second most common cancer among women worldwide (43). Papillomaviruses cause proliferative squamous epithelial lesions, and more than 100 HPV types have been described (14). The HPV types associated with mucosal squamous epithelial lesions have been further classified into high- or low-risk types based on the propensity for the lesions with which they are associated to progress to cancer. Among the high-risk HPV types, HPV type 16 (HPV16) and HPV18 account for approximately 70% of cervical cancers (43). The high-risk HPV types carry two genes, the E6 and E7 genes, which have oncogenic properties and are always expressed in HPV-positive cancers. E6 and E7 interfere with the p53 and retinoblastoma (pRB) tumor suppressor pathways, respectively, and contribute directly to cell cycle alterations, protection from apoptosis, and transformation (14). The dysregulated expression of the E6 and E7 oncoproteins is an important step in the progression from a preneoplastic stage to cancer in HPV-infected cells and is often a consequence of the integration of the viral genome into the host chromosome.The interaction between E6 and p53 is mediated by the E3 ubiquitin ligase E6AP (15). E6, p53, and E6AP form a complex in which E6 directs the ligase activity of E6AP to p53, thereby targeting p53 for ubiquitin-mediated degradation (36). E6, however, has a number of other cellular partners and other functions. For instance, the C terminus of the high-risk E6 protein contains a PDZ binding motif (20, 25) that mediates the interaction with several PDZ domain-containing proteins, including discs large (Dlg), Scribble (Scrib), the MAGI family of proteins, MUPP1, and PATJ (9, 10, 29). Some of these proteins are also targeted for degradation in an E6AP-dependent manner (22, 29). While the major mechanism of oncogenesis revolves around E6''s ability to inhibit the proapoptotic effects of p53, recent work involving the PDZ domain proteins indicates that these interactions are also important to the oncogenic potential of E6 (38, 41). Furthermore, E6 has been reported to bind a number of other cellular proteins, including but not limited to Bak, CBP/p300, c-Myc, E6TP1, hADA3, IRF3, MCM7, PTPH1, and TNF-R1 (7, 8, 17, 23, 24, 32, 35, 39, 40). The importance of the binding of several of these proteins with regard to the transformation or other functions of E6 remains to be established. E6 itself is thought to be targeted for degradation by an ubiquitin-proteasome pathway (18), although how E6 protein stability is regulated has not been well studied.Many of the E6 binding partners have been identified using purified bacterially expressed E6 fusion proteins and cell lysates from various cell types or using yeast two-hybrid screenings. While some of these interactions with E6 have been validated, the physiologic relevance of a number of proposed E6 targets remains undetermined. In an effort to identify E6-interacting proteins, perhaps under more physiologic conditions, we employed tandem affinity purification (TAP) using tagged HPV16 E6 stably expressed in the HPV16-positive cervical cancer cell line SiHa. We have discovered several new interacting proteins, including an interaction between E6 and the cellular deubiquitylating enzyme (DUB) USP15. USP15 is not targeted for degradation by E6, but we found that USP15 stabilizes E6 protein levels, suggesting that E6 may itself be a target for USP15 DUB activity.  相似文献   

7.
8.
9.
10.
11.
12.
Replication of the genome of human papillomaviruses (HPV) is initiated by the recruitment of the viral E1 helicase to the origin of DNA replication by the viral E2 protein, which binds specifically to the origin. We determined, for HPV type 11 (HPV-11), that the C-terminal 296 amino acids of E1 are sufficient for interaction with the transactivation domain of E2 in the yeast two-hybrid system and in vitro. This region of E1 encompasses the ATP-binding domain. Here we have examined the role of this ATP-binding domain, and of ATP, on E2-dependent binding of E1 to the origin. Several amino acid substitutions in the phosphate-binding loop (P loop), which is implicated in binding the triphosphate moiety of ATP, abolished E2 binding, indicating that the structural integrity of this domain is essential for the interaction. The structural constraints imposed on the E1 P loop may differ between HPV-11 and bovine papillomavirus type 1 (BPV-1), since the P479S substitution that inactivates BPV-1 E1 is tolerated in the HPV-11 enzyme. Other substitutions in the E1 P loop, or in two other conserved motifs of the ATP-binding domain, were tolerated, indicating that ATP binding is not essential for interaction with E2. Nevertheless, ATP-Mg stimulated the E2-dependent binding of E1 to the origin in vitro. This stimulation was maximal at the physiological temperature (37 degrees C) and did not require ATP hydrolysis. In contrast, ATP-Mg did not stimulate the E2-dependent binding to the origin of an E1 protein containing only the C-terminal domain (353 to 649) or that of mutant E1 proteins with alterations in the DNA-binding domain. These results are discussed in light of a model in which the E1 ATP-binding domain is required for formation of the E2-binding surface and can, upon the binding of ATP, facilitate and/or stabilize the interaction of E1 with the origin.  相似文献   

13.
14.
The TRF2-Rap1 complex suppresses non-homologous end joining and interacts with DNAPK-C to prevent end joining. We previously demonstrated that hTRF2 is a double strand telomere binding protein that forms t-loops in vitro and recognizes three- and four-way junctions independent of DNA sequence. How the DNA binding characteristics of hTRF2 to DNA is altered in the presence of hRap1 however is not known. Here we utilized EM and quantitative gel retardation to characterize the DNA binding properties of hRap1 and the TRF2-Rap1 complex. Both gel filtration chromatography and mass analysis from two-dimensional projections showed that the TRF2-Rap1 complex exists in solution and binds to DNA as a complex consisting of four monomers each of hRap1 and hTRF2. EM revealed for the first time that hRap1 binds to DNA templates in the absence of hTRF2 with a preference for double strand-single strand junctions in a sequence independent manner. When hTRF2 and hRap1 are in a complex, its affinity for ds telomeric sequences is 2-fold higher than TRF2 alone and more than 10-fold higher for telomeric 3′ ends. This suggests that as hTRF2 recruits hRap1 to telomeric sequences, hRap1 alters the affinity of hTRF2 and its binding preference on telomeric DNA. Moreover, the TRF2-Rap1 complex has higher ability to re-model telomeric DNA than either component alone. This finding underlies the importance of complex formation between hRap1 and hTRF2 for telomere function and end protection.  相似文献   

15.
16.
应用酵母双杂交方法筛选到与糖皮质激素受体(GR)结合的蛋白JAB1,进一步验证JAB1与GR的结合作用并证明其对GR的影响.构建与Gal4-BD融合表达的载体pGBKT7-GR LBD,与构建于pACT2载体上的人骨髓cDNA文库杂交,在SD/-Ade/-His/-Leu/-Trp选择培养板上培养,经X-α-gal检测,阳性克隆片段插入pGEM®-T Vector 载体,测序,再经酵母双杂交和GST pull down蛋白质结合实验验证其结合作用,应用反映GR转录活性的CAT报告基因检测JAB1对GR的调节活性.结果在人骨髓cDNA文库中,筛选到42个X-α-gal检测变蓝且含有pACT2质粒序列的克隆,其中有5个克隆的序列皆为Jun活性区结合蛋白JAB1的一部分.酵母双杂交和蛋白质结合实验表明,JAB1与COS7真核表达的GR-LBD在体外有结合作用.JAB1加强GR转录激活的能力.  相似文献   

17.
为了深入研究Wnt信号的传导机制 ,利用GAL4酵母双杂交系统 ,以Wnt受体LRP6的胞内区为诱饵蛋白 ,筛选小鼠 11 5d胚胎cDNA文库 ,发现了一个新的LRP6相互作用蛋白 :黑色素瘤相关抗原MAAT1p15 (melanoma associatedantigenrecognizedbycytotoxicTlymphocytesp15 ) .免疫共沉淀方法证明了LRP6胞内区和MAAT1p15在哺乳动物细胞中也存在相互作用 .荧光素酶报告系统分析实验显示 ,MAAT1p15能够明显增强Wnt1和LRP6响应的下游基因的转录活性 ,提示MAAT1p15可能是LRP6的一个辅助蛋白  相似文献   

18.
19.
20.
Plekhm1 is a large, multi-modular, adapter protein implicated in osteoclast vesicle trafficking and bone resorption. In patients, inactivating mutations cause osteopetrosis, and gain-of-function mutations cause osteopenia. Investigations of potential Plekhm1 interaction partners by mass spectrometry identified TRAFD1 (FLN29), a protein previously shown to suppress toll-like receptor signaling in monocytes/macrophages, thereby dampening inflammatory responses to innate immunity. We mapped the binding domains to the TRAFD1 zinc finger (aa 37-60), and to the region of Plekhm1 between its second pleckstrin homology domain and its C1 domain (aa 784-986). RANKL slightly increased TRAFD1 levels, particularly in primary osteoclasts, and the co-localization of TRAFD1 with Plekhm1 also increased with RANKL treatment. Stable knockdown of TRAFD1 in RAW 264.7 cells inhibited resorption activity proportionally to the degree of knockdown, and inhibited acidification. The lack of acidification occurred despite the presence of osteoclast acidification factors including carbonic anhydrase II, a3-V-ATPase, and the ClC7 chloride channel. Secretion of TRAP and cathepsin K were also markedly inhibited in knockdown cells. Truncated Plekhm1 in ia/ia osteopetrotic rat cells prevented vesicle localization of Plekhm1 and TRAFD1. We conclude that TRAFD1, in association with Plekhm1/Rab7-positive late endosomes-early lysosomes, has a previously unknown role in vesicle trafficking, acidification, and resorption in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号