首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磁性纳米粒子,是一类智能型的纳米材料,因其特有的性质,被广泛应用于生物医学领域,在肝癌的治疗方面也有大量的实验性研究和成果。研究和探索磁性纳米粒子治疗肝癌的新方法和途径,有着很大的现实意义。本文就磁性纳米粒子作用于肝癌细胞的生物学效应的研究现状和进展进行总结整理,从三个方面进行了综述:磁性纳米粒子直接作用于肝癌细胞,探索磁性纳米粒子的生物相容性、在肝癌细胞的分布方式以及磁性纳米粒子本身对肝癌细胞的生物学效应的影响;磁性纳米粒子协同外加磁场(稳恒磁场、极低频交变磁场和高频交变磁场)作用于肝癌细胞;磁性纳米粒子外加修饰(磁性白蛋白纳米颗粒、纳米磁流体、磁性脂质体等),作为药物载体作用于肝癌细胞。  相似文献   

2.
目的:观察磁性四氧化三铁(Fe3O4)纳米粒子对肝癌细胞的体外作用,并研究外加稳恒磁场(SMF)或交变磁场(EMF)对Fe3O4纳米粒子作用的影响。方法:光镜下观察CBRH-7919细胞对Fe3O4纳米粒子的吞噬作用;MTT法检测Fe3O4纳米粒子对大鼠肝癌细胞株CBRH-7919的毒性及外加磁场的影响;流式细胞术检测外加磁场作用下Fe3O4纳米粒子对细胞凋亡及线粒体膜电位的影响。结果:光镜下可见CBRH-7919细胞吞噬大量Fe3O4纳米粒子入胞浆,且交变磁场作用下细胞的吞噬量增加。30~100μg/mL Fe3O4纳米粒子作用于CBRH-7919细胞未产生细胞毒性,稳恒磁场对其作用无影响,而交变磁场能增加Fe3O4纳米粒子的毒性,使细胞活性降低、凋亡率增加、线粒体膜电位降低。结论:交变磁场能增加CBRH-7919细胞对Fe3O4纳米粒子的吞噬并产生细胞毒性。  相似文献   

3.
磁性纳米粒子肿瘤热疗技术是目前国际上肿瘤研究的热点.本文提出了一种基于超声驱动磁性纳米粒子(UDMNP)运动进行肿瘤细胞灭杀的新技术,实现磁性纳米粒子的肿瘤治疗.系统研究了肝癌肿瘤细胞HepG2的治疗效果,在一定超声频率下,改变超声功率和超声作用时间,UDMNP具有明显灭杀效果.实验结果显示,较小超声功率下,肿瘤细胞损伤较小,随着超声功率增加,UDMNP对肿瘤细胞表现出明显的灭杀作用.同时,随着作用时间增加,同一超声功率驱动下UDMNP对细胞的灭杀效果也明显提高,光学显微镜观察到细胞形态发生明显变化.本文提出的UDMNP肿瘤细胞灭杀方法的显著优势是减少了化学毒性和有害辐射,是一种物理性机械损伤技术,对促进磁性纳米粒子的临床医学应用有重要意义.  相似文献   

4.
磁性纳米材料具有独特的磁学性质,可响应外磁场,产生力、热等效应。如在静磁场下将药物磁靶向递送至肿瘤部位;低频交变磁场下可将纳米药物主动渗透至病灶部位,实现瘤内均一分布;中频交变磁场作用下磁滞损耗产生热和增强的活性氧,用于肿瘤治疗。磁性纳米材料同时具有尺寸依赖的磁学性质以及表面多功能化等特点,可将磁靶向、分子靶向以及磁热疗联合。此外,磁性纳米材料具有磁共振成像性能以及纳米酶催化特性,使其在肿瘤诊疗一体化治疗方面获得了广泛应用。近年来,纳米给药系统不断被优化,基于磁性纳米材料的肿瘤靶向治疗也得到了长足的发展。鉴于此,本文围绕提高靶向肿瘤治疗效果,从磁靶向药物治疗、被动靶向磁热疗和主动分子靶向磁热疗、纳米酶特性以及诊疗一体化应用等几方面出发,综述了基于磁性纳米材料的肿瘤靶向治疗研究进展。  相似文献   

5.
随着现代科技的发展,人们所接触的磁场越来越多,因此,磁场对人体所产生的影响也受到了公众的日益关注。虽然目前人们对于手机和高压输电线等所产生的射频和工频磁场对人体的影响还没有确凿的结论,但是大量的研究发现,中等强度的稳态磁场以及基于永磁铁的极低频旋转磁场(旋磁)对人体细胞和实验动物等并无危害,甚至可能会对人体产生一些有益的影响。该综述将简要介绍稳态磁场的生物学效应,并重点介绍基于永磁铁的20 Hz以下中等强度极低频旋转磁场(中强低频旋磁)所产生的生物学效应。中强低频旋磁相关的生物学研究虽然目前尚处于起步阶段,但已显示出潜在的治疗前景。  相似文献   

6.
邢娟  刘军锋  李金莲  闫鹏 《生物磁学》2012,(31):6055-6059,6028
目的:观察磁性四氧化三铁(Fe3O4)纳米粒子对肝癌细胞的体外作用,并研究外加稳恒磁场(SMF)或交变磁场(EMF)对FeID4纳米粒子作用的影响。方法:光镜下观察CBRH-7919细胞对Fe3O4纳米粒子的吞噬作用;MTT法检测Fe304纳米粒子对大鼠肝癌细胞株CBRH-7919的毒性及外加磁场的影响;流式细胞术检测外加磁场作用下Fe3O4纳米粒子对细胞凋亡及线粒体膜电位的影响。结果:光镜下可见CBRH-7919细胞吞噬大量Fe3O4纳米粒子入胞浆,且交变磁场作用下细胞的吞噬量增加。30-100μg/mLFe3O4纳米粒子作用于CBRH-7919细胞未产生细胞毒性,稳恒磁场对其作用无影响,而交变磁场能增加Fe3O4纳米粒子的毒性,使细胞活性降低、凋亡率增加、线粒体膜电位降低。结论:交变磁场能增加CBRH-7919细胞对Fe3O4纳米粒子的吞噬并产生细胞毒性。  相似文献   

7.
目的:探讨免疫磁性纳米粒子分离人脐血CD133细胞的方法,了解分离出的CD133细胞在体外短期培养中的变化及其在体外扩增的可能性。方法:通过化学沉淀法制备具有超顺磁性的r-Fe_2O_3纳米粒子,在其表面包裹具有生物亲合性的二氧化硅,并在其表面通过化学修饰使其成为生物功能化的磁性纳米粒子。再通过一定的化学连接方法将单克隆抗体CD133连接到生物功能化的磁性纳米粒子表面使其成为免疫磁性纳米粒子,然后利用自制的免疫磁性纳米粒子从单个核细胞中分离出CD133细胞,并分别对单个核细胞和CD133细胞在体外短期培养中的动态变化进行了初步观察和比较。结果:经免疫磁性纳米粒子分离的脐血中CD133细胞平均数为(5±1.4)×10~7/ml,占单个核细胞数的(3±0.3)%;单个核细胞(对照组)和CD133细胞(实验组)分别进行红、粒系集落扩增培养14天、21天,实验组中两种造血祖细胞集落扩增倍数都明显高于对照组(P<0.01)。结论:使用自制的免疫磁性纳米粒子能较好的分离脐血中的CD133细胞,分离与纯化出来的CD133细胞不仅细胞活力不受影响,而且与单个核细胞相比具有更强的增殖能力。  相似文献   

8.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

9.
纳米科学技术是20世纪80年代末期诞生并蓬勃发展的新兴科学技术,以多学科交叉融合为特色,为物理、化学、材料和生命科学等提供新的技术手段和研究视角.纳米材料的结构及表面物理化学性质直接决定了其与生物分子、细胞、组织、器官及个体的相互作用方式,并由此产生独特的生物效应——纳米生物效应.纳米生物学是从个体、细胞及分子水平深入研究纳米生物效应、阐明其精确机制的交叉科学,现已成为极具挑战性的热点前沿领域.中国科学家在纳米生物学领域已取得一系列令国际同行瞩目的重要进展,其中纳米酶(nanozyme)的开发及应用研究是极具代表性的原创发现之一.  相似文献   

10.
目的:对纳米级Fe3O4磁性粒子与人肝癌细胞HepG-2及人正常肝细胞L02作用的生物学行为进行实验研究。方法:通过化学沉淀法制备粒径为10nm左右的纳米级Fe3O4磁性粒子,观察其表征;将不同浓度纳米级Fe3O4粒子加入培养液分别与HepG-2混合培养检测凋亡坏死率;将相同浓度粒子分别与HepG-2和L02混合培养,对两者作用的差异进行动态观察比较。结果:纳米级Fe3O4磁性粒子能在肝癌细胞HepG-2细胞内稳定存在72小时以上,有良好的生物相容性;透射电镜观察到Fe3O4磁性粒子主要分布于细胞的溶酶体及吞噬泡内。共培养1小时后即有较多的纳米磁性粒子进入HepG-2内,而3小时后才见L02细胞内有少量的磁性粒子进入。结论:此实验结果为磁性纳米粒子与肿瘤细胞微观结构的作用提供了有意义的实验数据,并可能对应用磁性纳米粒子治疗恶性肿瘤提供有价值的依据。  相似文献   

11.
造影剂辅助的核磁共振成像是目前肿瘤诊断的最好方法之一.但是由于核磁共振成像内在的低灵敏性以及造影剂的非特异性,导致肿瘤早期诊断较为困难.文章将一种新的肿瘤靶向核磁造影剂纳米粒子应用于早期肿瘤的影像诊断.这种新的肿瘤靶向核磁造影剂纳米粒子由配体转铁蛋白(Tf)、纳米水平的正电脂质体(Lip)载体和临床常用的造影剂Magnevist(TfNIR-LipNBD-Magnevist)三部分构成.另外转铁蛋白和脂质体粒子上,亦标记了荧光物质用于确定转铁蛋白-脂质体-造影剂纳米粒子的靶向性,以及肿瘤的光学影像诊断.在体外实验中,利用激光共聚焦显微镜和光学影像证明了靶向纳米粒子介导的细胞内吞和特异性结合.在裸鼠肿瘤模型中,造影剂纳米粒子TfNIR-LipNBD-Magnevist经尾静脉注入后,显著增强了肿瘤内信号与周围组织的对比度.由造影剂纳米粒子介导的肿瘤内信号显著强于单独Magnevist辅助的肿瘤内信号.同时,利用光学影像方法,在肿瘤内检测到特异的荧光信号.其结果进一步支持了转铁蛋白-脂质体-造影剂(TfNIR-LipNBD-Magnevist)纳米粒子的靶向性和肿瘤影像诊断的有效性.  相似文献   

12.
磁性纳米颗粒具有独特的磁学性质,即在外加交变磁场下因产生磁滞释放热量,使其在生物医学领域,特别是肿瘤磁热疗,获得了广泛应用.到目前为止,磁性纳米颗粒介导的磁热疗成为一种治疗癌症的有效手段,已进入临床三期实验.因此,针对磁性纳米颗粒本身,优化设计尺寸、形貌、组分和表面修饰来提高其磁热性能,进而减小临床应用中的颗粒浓度来最小化毒副作用的研究,对肿瘤治疗及生物医药研究具有十分重要的意义.本综述详述如何优化调制磁性纳米颗粒以提高其磁热性能,为高效、低毒的磁性纳米颗粒的设计提供了指导性的研究方向.  相似文献   

13.
活性氧(reactive oxygen species, ROS)普遍存在于动植物中,参与多个信号通路,其水平依赖于产生和清除过程的动态平衡。目前有多项研究发现,静磁场能够影响细胞内ROS水平,但其结果并不一致。本文系统分析和比较了不同参数静磁场(也称稳态磁场)对多种生物样本ROS水平的影响,发现静磁场对生物体内ROS影响的不一致性与磁场处理本身(包括磁场强度、方向、处理时间等)和研究对象(包括细胞类型和状态等)都有关系,并且还取决于所检测的ROS类型(过氧化氢、超氧阴离子和羟自由基等)。分析和总结现有的静磁场对ROS的影响不仅有助于我们深入了解静磁场的生物学效应,为下一步机制研究提供实验依据,并且为开发静磁场在生物医学中的潜在应用提供一定的理论基础。  相似文献   

14.
前期研究发现,50 Hz弱磁场辐照能明显降低细胞的微丝含量和组装效率,对actin骨架形态也有明显影响.电磁生物学效应是否与辐照场频率相关,一直受到研究者的关注.单体球状肌动蛋白(G-actin)是带电结构,电磁场频率会影响其振荡频率并对微丝聚合效率产生影响.本文从细胞骨架形态和蛋白质两层次,采用免疫荧光技术考察0.4 m T,在35~140 Hz范围内5个频率的极低频磁场(ELF-MF)对FL细胞中纤维状肌动蛋白(F-actin)含量的影响,并采用荧光共振能量转移技术(FRET)验证效应最明显的频率对离体G-actin组装效率的干扰程度.结果显示,相比假辐照组,细胞中F-actin含量在50 Hz辐照组下降了(34.66±3.14)%,110 Hz次之,而另外3组(35、70和140 Hz)无显著性差异.同时利用FRET方法验证,在50 Hz磁场辐照下,离体环境中G-actin组装成F-actin的效率较假辐照组、35和70 Hz组显著降低.经初步分析,G-actin在弱ELF-MF中受到以洛伦兹力和感生电场力的合力为主的相关电磁力干扰,致使组装效率下降,且由于工频磁场周期与微丝组装周期的特殊相干性,在50 Hz频率附近可能存在一个外磁场干扰actin骨架组装的频率窗口.  相似文献   

15.
磁场的生物学效应及其机理的研究   总被引:22,自引:2,他引:20  
朱杰 《生物磁学》2005,5(1):26-29
本就不同参数的磁场的生物学效应研究进行了综述,总结了磁场对生命体整体、组织、器官、细胞直至生物大分子层面上的研究成果,并结合实验结果对磁场生物学效应的可能物理机制进行了初步探讨,并对磁场生物学效应的研究前景进行了展望。  相似文献   

16.
磁场的生物学效应及其机理的研究   总被引:1,自引:1,他引:0  
本文就不同参数的磁场的生物学效应研究进行了综述,总结了磁场对生命体整体、组织、器官、细胞直至生物大分子层面上的研究成果,并结合实验结果对磁场生物学效应的可能物理机制进行了初步探讨,并对磁场生物学效应的研究前景进行了展望。  相似文献   

17.
利用化学共沉淀法制备近微米级葡聚糖T-40包被的超顺磁纳米氧化铁(SPIO)粒子。用X射线衍射(XRD)、透射电镜(TEM)、原子力显微镜(AFM)、红外光谱等手段对其性质进行表征。XRD确定所制备的粒子主要为Fe3O4晶体,具有超顺磁性且饱和磁化强度为64.396emu/g;TEM显示无机核心粒径约为20nm;被葡聚糖包被后,AFM显示粒子呈扁平长方体形貌,三维尺寸为(200~300)nm×(400~600)nm×(50~70)nm。在超声作用下,该类粒子能够对小鼠H-22肝癌细胞进行标记,说明所制备的磁性纳米粒子具有作细胞磁性标记物的特性,同时超声也可促进H-22细胞快速装载磁性微粒。  相似文献   

18.
磁场作为重要的物理因素是如何影响生物体的,而生物体又是如何响应磁场并产生广泛的生物学效应的,这是学术界关注多年的基本科学问题之一。近几年来,随着磁感应蛋白的发现,磁生物学成为国际前沿热点研究,并由此将引发一系列基于磁感应机制的由磁场来操控生物大分子乃至细胞行为、动物行为的各种应用。免疫细胞已被报道能够响应磁场并在磁场作用下改变细胞行为,但其作用机制并不十分清楚。该综述将简要介绍磁场对免疫细胞的生物学效应,并对磁感应机制研究现状进行总结和分析。深入了解磁场对免疫细胞的生物学效应和可能机制,一方面将有可能在细胞水平发现磁感应机制的新线索,另一方面有可能发掘用物理的手段来改变免疫细胞行为的新方法,探索新的免疫治疗途径。  相似文献   

19.
不同类型磁场对细胞作用的生物学研究   总被引:14,自引:6,他引:8  
朱杰 《生物磁学》2004,4(4):28-30
本文就不同参数的磁场的细胞生物学效应研究进行了综述,总结了不同类型不同物理参数的磁场对细胞生物学效应的研究成果,结合实验结果对磁场生物学效应的可能物理机制进行了初步探讨,并对磁场的细胞生物学效应的研究前景进行了展望。  相似文献   

20.
本文就不同参数的磁场的细胞生物学效应研究进行了综述 ,总结了不同类型不同物理参数的磁场对细胞生物学效应的研究成果 ,结合实验结果对磁场生物学效应的可能物理机制进行了初步探讨 ,并对磁场的细胞生物学效应的研究前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号