首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The microbial biotransformation of Δ9-tetrahydrocannabinol was investigated using a collection of 206 alkane-degrading strains. Fifteen percent of these strains, mainly gram-positive strains from the genera Rhodococcus, Mycobacterium, Gordonia, and Dietzia, yielded more-polar derivatives. Eight derivatives were produced on a mg scale, isolated, and purified, and their chemical structures were elucidated with the use of liquid chromatography-mass spectrometry, 1H-nuclear magnetic resonance (1H-NMR), and two-dimensional NMR (1H-1H correlation spectroscopy and heteronuclear multiple bond coherence). All eight biotransformation products possessed modified alkyl chains, with hydroxy, carboxy, and ester functionalities. In a number of strains, β-oxidation of the initially formed C5 carboxylic acid led to the formation of a carboxylic acid lacking two methylene groups.Δ9-Tetrahydrocannabinol (Δ9-THC) is the decarboxylated product of the corresponding Δ9-THC acid, the major cannabinoid present in the cannabis plant (Cannabis sativa L., Cannabaceae). This compound is officially registered as a drug for the stimulation of appetite and antiemesis in patients under chemotherapy and human immunodeficiency virus therapy regimens. Other biological activities ascribed to this compound include lowering intraocular pressure in glaucoma, acting as an analgesic for muscle relaxation, immunosuppression, sedation, bronchodilation, and neuroprotection (11).Δ9-THC and many of its derivatives are highly lipophilic and poorly water soluble. Calculations of the n-octanol/water partition coefficient (Ko/w) of Δ9-THC at neutral pH vary between 6,000, using the shake flask method (15), and 9.44 × 106, by reverse-phase high-performance liquid chromatography estimation (19). The poor water solubility and high lipophilicity of cannabinoids cause their absorption across the lipid bilayer membranes and fast elimination from blood circulation. In terms of the “Lipinsky rule of 5” (14), the high lipophilicity of cannabinoids hinders the further development of these compounds into large-scale pharmaceutical products.To generate more water-soluble analogues, one can either apply de novo chemical synthesis (as, e.g., in reference 16) or modify naturally occurring cannabinoids, e.g., by introducing hydroxy, carbonyl, or carboxy groups. Chemical hydroxylation of compounds such as cannabinoids is difficult (Δ9-THC is easily converted into Δ8-THC under mild conditions), and therefore microbial biotransformation of cannabinoids is potentially a more fruitful option to achieve this goal.So far, studies on biotransformation of Δ9-THC were mainly focused on fungi, which led to the formation of a number of mono- and dihydroxylated derivatives. Previous reports on the biotransformation of cannabinoids by various microorganisms are summarized in Table Table1.1. The aim of the present study was to test whether bacterial strains are capable of transforming Δ9-THC into new products (with potentially better pharmaceutical characteristics) at a higher yield and specificity than previously found for fungal strains. For this purpose, we have chosen to use a collection of alkane-degrading strains, since it was shown in previous studies (8, 18, 20) that alkane oxygenases often display a broad substrate range. Production of novel cannabinoid derivatives that might have interesting pharmacological activities was another objective of this project.

TABLE 1.

Previous biotransformation experiments conducted using various microorganisms to transform cannabinoids
Cannabinoid(s)aMicroorganism(s) usedNo. of transformed productsReference
Δ9-THCCunninghamella blakesleeana63
Δ8-THCPellicularia filamentosa421
Δ8-THCStreptomyces lavendulae421
Δ6a,10a-THC400 cultures (soil microorganisms)Various1
Nabilone400 cultures (soil microorganisms)Various1
Δ6a,10a-THC358 cultures containing bacteria, actinomycetes, and molds310
Δ9-THC, Δ8-THC, CBD, CBNSyncephalastrum racemosum, Mycobacterium rhodochrousVarious17
Δ9-THCChaetomium globosum37
Δ9-THC51 fungal strains84
NabiloneMicrobesVarious2
Δ9-THCFusarium nivale, Gibberella fujikuroi, and Thamnidium elegans85
Open in a separate windowaCBD, cannabidiol; CBN, cannabinol.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The effect of eliminating d-lactate synthesis in poly(3-hydroxybutyrate) (PHB)-accumulating recombinant Escherichia coli (K24K) was analyzed using glycerol as a substrate. K24KL, an ldhA derivative, produced more biomass and had altered carbon partitioning among the metabolic products, probably due to the increased availability of carbon precursors and reducing power. This resulted in a significant increase of PHB and ethanol synthesis and a decrease in acetate production. Cofactor measurements revealed that cultures of K24K and K24KL had a high intracellular NADPH content and that the NADPH/NADP+ ratio was higher than the NADH/NAD+ ratio. The ldhA mutation affected cofactor distribution, resulting in a more reduced intracellular state, mainly due to a further increase in NADPH/NADP+. In 60-h fed-batch cultures, K24KL reached 41.9 g·liter−1 biomass and accumulated PHB up to 63% ± 1% (wt/wt), with a PHB yield on glycerol of 0.41 ± 0.03 g·g−1, the highest reported using this substrate.Poly(3-hydroxybutyrate) (PHB) is the best-known and most common polyhydroxyalkanoate (PHA). PHAs are polymers with thermoplastic properties that are totally biodegradable by microorganisms present in most environments and that can be produced from different renewable carbon sources (38). Accumulated as intracellular granules by many bacteria under unfavorable conditions (1, 21), PHAs are carbon and energy reserves and also act as electron sinks, enhancing the fitness and stress resistance of bacteria and contributing to redox balance (12, 30). Escherichia coli offers a well-defined physiological environment for the construction and manipulation of various metabolic pathways to produce different bioproducts, such as PHB, from cost-effective carbon sources.In recent years, a significant increase in the production of biodiesel has caused a sharp fall in the cost of glycerol, the main by-product of biodiesel synthesis. As a result, glycerol has become a very attractive substrate for bacterial fermentations (10), specially for reduced products, such as PHB (36). The E. coli strain used in this work, K24K, carries phaBAC, the structural genes responsible for PHB synthesis, from Azotobacter sp. strain FA8 (23) (Table (Table1).1). The pha genes in K24K are expressed from a chimeric promoter and consequently are not subject to the genetic regulatory systems present in natural PHA producers. Because of this, it can be assumed that regulation of PHA synthesis in the recombinants is restricted by enzyme activity levels, modulated principally by substrate availability. In most natural producers, and also in PHB-producing E. coli recombinants, PHB is synthesized through the condensation of two molecules of acetyl-coenzyme A (acetyl-CoA), catalyzed by an acetoacetyl-CoA transferase or 3-ketothiolase, resulting in acetoacetyl-CoA. This compound is subsequently reduced by an NAD(P)H-dependent acetoacetyl-CoA reductase to R-(−)-3-hydroxybutyryl-CoA, which is then polymerized by a specific PHA synthase (34).

TABLE 1.

E. coli strains, plasmids, and oligonucleotides used in this study
Strain, plasmid, or oligonucleotideRelevant characteristicsbReference or source
E. coli strains
    K1060aFfadE62 lacI60 tyrT58(AS) fabB5 mel-129
    K24Same as K1060, carrying pJP24; Apr23
    K24KSame as K1060, carrying pJP24K; Apr Kmr23
    ALS786aF λrph-1 ΔldhA::kan; Kmr14
    K24LTSame as K1060 but ΔldhA::kan by K1060 × P1(ALS786), carrying pJP24; Apr KmrThis work
    K24KLSame as K1060 but ΔldhA by allelic replacement, carrying pJP24K; KmrThis work
    TA3522aF λ Δ(his-gnd)861 hisJo-7012
    TA3514aSame as TA3522 but pta-20019
    TA3522LSame as TA3522 but ΔldhA::kan by TA3522 × P1(ALS786); KmrThis work
    TA3514LSame as TA3514 but ΔldhA::kan by TA3514 × P1(ALS786); KmrThis work
Plasmids
    pQE32Expression vector, ColE1 ori; AprQiagen GmbH, Hilden, Germany
    pJP24pQE32 derivative expressing a 4.3-kb BamHI-HindIII insert containing the phaBAC genes from Azotobacter sp. strain FA8 under the control of a T5 promoter/lac operator element; Apr23
    pJP24KpJP24 derivative; Apr Kmr23
    pCP20Helper plasmid used for kan excision; Saccharomyces cerevisiae FLP λ cI857 λ PRrepA(Ts); Apr Cmr7
Oligonucleotides
    ΔldhA-F5′-TAT TTT TAG TAG CTT AAA TGT GAT TCA ACA TCA CTG GAG AAA GTC TTA TGG TGT AGG CTG GAG CTG CTT C-3′This work
    ΔldhA-R5′-CTC CCC TGG AAT GCA GGG GAG CGG CAA GAT TAA ACC AGT TCG TTC GGG CAC ATA TGA ATA TCC TCC TTA G-3′This work
Open in a separate windowaStrain obtained through the E. coli Genetic Stock Center, Yale University, New Haven, CT.bFor oligonucleotides, the ATG codon of ldhA is underlined and the sequences with homology to FRT-kan-FRT in the template plasmid pKD4 (11) are shown in boldface.Cells growing on glycerol are in a more reduced intracellular state than cells grown on glucose under similar conditions of oxygen availability. This has a significant effect on the intracellular redox state, which causes the cells to direct carbon flow toward the synthesis of more-reduced products when glycerol is used than when glucose is used in order to achieve redox balance (31). When metabolic product distribution was analyzed in bioreactor cultures of K24K using glucose or glycerol as the substrate, product distributions with the two substrates were found to be different, as glycerol-grown cultures produced smaller amounts of acetate, lactate, and formate and more ethanol than those grown on glucose. However, PHB production from glycerol was lower than that from glucose, except under conditions of low oxygen availability (13).Manipulations to enhance the synthesis of a metabolic product include several approaches to increase the availability of the substrates needed for its formation or to inhibit competing pathways. The effect of eliminating competing pathways on PHB production from glucose has been investigated through the inactivation of different genes, such as those encoding enzymes participating in the synthesis of acetate (ackA, pta, and poxB) or d-lactate (ldhA). A pta mutant, which produces very little acetate (6), and an frdA ldhA double mutant (40) had increased PHB accumulation from glucose. A recent report using an ackA pta poxB ldhA adhE mutant under microaerobic conditions attained similar results (17). The inactivation of ldhA has also been shown to have an important effect on the metabolic product distribution in recombinant E. coli with glycerol as the carbon source, promoting ethanol synthesis (28). In the present work we analyzed the effect of ldhA inactivation in strain K24K using glycerol as the carbon source, with special emphasis on changes in carbon distribution and in the intracellular redox state, determined through cofactor levels.  相似文献   

13.
14.
15.
16.
17.
Aerobic growth conditions significantly influenced anaerobic succinate production in two-stage fermentation by Escherichia coli AFP111 with knockouts in rpoS, pflAB, ldhA, and ptsG genes. At a low cell growth rate limited by glucose, enzymes involved in the reductive arm of the tricarboxylic acid cycle and the glyoxylate shunt showed elevated activities, providing AFP111 with intracellular redox balance and increased succinic acid yield and productivity.Succinic acid is valued as one of the key basic chemicals used in the preparation of biodegradable polymers or as raw material for chemicals of the C4 family (8, 19). The fermentative production of succinic acid from renewable resources is environmentally acceptable and sustainable (3). A breakthrough in genetically engineering Escherichia coli (6, 7, 11, 18) for succinate production was the isolation of strain AFP111 (1, 4), a mutant of NZN111 with a spontaneous ptsG mutation (pflAB ldhA double mutant). The process involves a two-stage fermentation, with aerobic cell growth followed by anaerobic conditions for succinate production (16, 21, 22). The aerobically induced enzymes can maintain their activity during the anaerobic phase and significantly affect succinate fermentation (22, 23). Using the best transition time based on the activities of the key enzymes and other physiological states, a two-stage fermentation using the recombinant AFP111 strain harboring pTrc99A-pyc achieved a final succinic acid concentration and productivity of 99.2 g·liter−1 and 1.3 g·liter−1·h−1, respectively (21).Aerobic cell growth is essential for the subsequent anaerobic fermentation. However, few studies have focused on the regulation of aerobic cell growth. As a regulation method, gluconeogenic carbon sources were used instead of glucose for the aerobic growth of Escherichia coli NZN111 and the activities of enzymes that are favorable for the anaerobic synthesis of succinate were enhanced (23, 24). Unfortunately, a gluconeogenic carbon source (e.g., sodium acetate) might increase the osmotic pressure of culture media, which would be detrimental to succinate production (23). As another regulation method, a glucose feeding strategy controlling the glucose concentration at about 0.5 g·liter−1 up to 1 g·liter−1 was reported to prevent excessive formation of acetic acid (16).In this study, we investigated different glucose feeding strategies for the aerobic growth phase of the two-phase process for succinate production by E. coli AFP111. Specifically, we compared several growth rates by using glucose limitation in addition to maximum growth under conditions of excess glucose.E. coli AFP111 [F+ λ rpoS396(Am) rph-1 ΔpflAB::Cam ldhA::Kan ptsG] (4, 16), which was a kind gift from D. P. Clark (Southern Illinois University), was the only strain used in this study. Luria-Bertani (LB) medium (60 ml) was used for inoculum culture in 1,000-ml flasks, and 3 liters of chemically defined medium (13, 14) was used for two-stage culture in a 7-liter fermentor. Two-stage fermentations were divided into three types, based on the glucose feeding strategy used during the aerobic stage. For type I culture, the glucose concentration was maintained at about 20 g·liter−1 during aerobic cell growth. Type II and III cultures comprised a batch process and subsequent glucose-limited fed-batch process (Fig. (Fig.1).1). The batch process initially contained 13 g/liter of glucose. The fed-batch process began when the dry cell weight (DCW) reached about 6 g/liter, with type II and type III cultures using a 600 g/liter glucose feed to achieve cell growth rates of 0.15 h−1 and 0.07 h−1, respectively (10). When the DCW reached 12 g·liter−1, the aerobically grown cells were directly transferred to anaerobic conditions (Fig. (Fig.1).1). For the anaerobic process, oxygen-free CO2 was sparged at 0.5 liter·min−1, the pH was controlled between 6.4 and 6.8 with intermittent supplementation of solid magnesium carbonate hydroxide, and the glucose concentration was maintained at about 20 g·liter−1 by supplying glucose in an 800-g·liter−1 solution.Open in a separate windowFIG. 1.Concentrations of glucose (circles), DCW (triangles), and succinic acid (squares) in the three types of two-stage fermentation by AFP111. μ, growth rate.The optical density at 600 nm was used to monitor cell growth, and this value was correlated to DCW. The concentration of glucose was assayed with an enzyme electrode analyzer, and organic acids were quantified by high-performance liquid chromatography (HPLC). The intracellular concentrations of NADH and NAD+ were assayed with a cycling method (12). The activities of isocitrate lyase (ICL) (20), pyruvate kinase (PYK) (17), phosphoenolpyruvate (PEP) carboxykinase (PCK) (20, 23), PEP carboxylase (PPC) (23), and malate dehydrogenase (MDH) (23) were measured spectrophotometrically at the end of the aerobic phase and 12 h after the onset of the anaerobic phase.All three types of fermentations were terminated when the succinate concentration increased less than 1 g·liter−1 in 5 h. Type III fermentation was terminated at a final succinic acid concentration of 101.2 g·liter−1 and an anaerobic-phase productivity of 1.89 g·liter−1·h−1 (Fig. (Fig.1).1). Trace amounts of by-products (such as acetate, ethanol, and pyruvate) accumulated and did not follow any trend in the anaerobic phase (data not shown).At the end of the aerobic culture phase, the specific enzyme activities of PCK, PYK, and ICL in type III culture were 2.9, 2.5, and 11.4 times higher, respectively, than the activities in type I culture (Table (Table1)1) . This phenomenon is consistent with published reports that suggest that the expression of enzymes involved in anaplerotic metabolism and the glyoxylate shunt (5, 15) is elevated in E. coli grown under glucose-limited conditions. These enzymes maintained their activities in the subsequent anaerobic phase (Table (Table1)1) and would be central to succinate production (22, 23). The elevated levels of PCK and PPC would provide the reductive branch of the tricarboxylic acid (TCA) cycle with oxaloacetate (OAA) at a higher rate (9), thereby supplying both malate and citrate (Table (Table11).

TABLE 1.

Activities of enzymes at the end of the aerobic culture phase and 12 h after the onset of the anaerobic phase
Fermentation typeaStagebMean sp act of enzyme ± SD (U/mg protein)c
PCKPPCMDHPYKICL
IAerobic0.82 ± 0.050.22 ± 0.0521.97 ± 0.151,175 ± 11.380.12 ± 0.00
Anaerobic0.55 ± 0.020.19 ± 0.0018.27 ± 1.05978 ± 12.330.09 ± 0.00
IIAerobic1.46 ± 0.100.23 ± 0.0425.69 ± 0.372,053 ± 3.650.73 ± 0.03
Anaerobic1.09 ± 0.010.20 ± 0.0135.55 ± 0.781,430 ± 13.780.41 ± 0.02
IIIAerobic2.38 ± 0.110.16 ± 0.0023.5 ± 0.132,955 ± 8.771.37 ± 0.00
Anaerobic1.75 ± 0.030.21 ± 0.0143.8 ± 0.622,501 ± 10.151.02 ± 0.01
Open in a separate windowaFermentation types were mentioned in culture conditions section.b“Aerobic” represents the data obtained at the end of aerobic culture; “Anaerobic” represents those obtained 12 h after transition to anaerobic fermentation.cThe standard deviations (SD) were calculated from triplicate samples of the same run.The reductive branch of the TCA cycle consumes 4 mol of electrons to form 2 mol of succinate based on 1 mol of glucose (1, 4). Therefore, the conversion of glucose to succinate through the reductive arm of the TCA cycle alone will lead to an intracellular imbalance of reducing equivalents (2, 18). Fortunately, the glyoxylate shunt (2, 18, 22) is available to provide 10 mol of electrons by converting 1 mol of glucose to 1 mol of succinate and 2 mol of CO2 (22). In the case of the ptsG mutant strain AFP111, when the molar flux at the PEP branch point flowing to OAA versus flowing to pyruvate reaches a ratio of 5:2, the intracellular redox balance is satisfied and the maximum theoretical mass yield of 1.12 g·g−1 succinic acid is achieved (22). Based on the elevated activities of PCK, PYK, and ICL (Table (Table1),1), both pathways leading to succinate were enhanced after glucose-limited growth. The succinic acid yields of 1.03 to 1.07 g·g−1 in the two glucose-limited processes approached the maximum theoretical yield for AFP111 (22), and these yields were about two times greater than the yield in the type I fermentation (Table (Table22).

TABLE 2.

Succinic acid production during anaerobic fermentation phasea
Fermentation typeMean ± SD
Succinic acid (g·liter−1)Yield (g·g−1)Productivity (g·liter−1·h−1)Specific productivity at 12 h (mg·g−1·h−1)NADH at 12 h mmol·(g DCW)−1NADH/NAD+ ratio at 12 h
I35.0 ± 0.740.43 ± 0.050.98 ± 0.04105 ± 150.88 ± 0.070.55 ± 0.08
II74.3 ± 3.241.03 ± 0.011.32 ± 0.05160 ± 81.95 ± 0.111.05 ± 0.10
III101.2 ± 1.041.07 ± 0.021.89 ± 0.07227 ± 111.97 ± 0.151.27 ± 0.13
Open in a separate windowaThe data were calculated only for the anaerobic stage. The standard deviations (SD) were calculated from two independent two-stage fermentations.In addition to differences in succinic acid yields, the glucose-limited and type I fermentations each resulted in significantly different specific succinic acid productivities (Table (Table2).2). A specific succinic acid productivity of 227 mg·g−1·h−1 was obtained at 12 h in type III fermentation. Because two pathways are needed for succinate production due to redox constraints, and enzyme activities in both pathways were elevated by glucose limitation, the results suggest that operating with glucose limitation provides the cells with greater metabolic flexibility to achieve a redox balance. Furthermore, the results suggest that one or more of these enzymes are limiting succinate formation under batch conditions (type I fermentation). Considering the NADH/NAD+ assays (Table (Table2),2), the results would support the hypothesis that succinate production was limited by insufficient NADH (2, 18).In summary, our study presented an efficient method of aerobic cell cultivation for two-stage succinate fermentation by engineered E. coli. Since the physiological state of aerobically grown cells was essential for their subsequent anaerobic succinate fermentation, some other environmental and physiology factors in the aerobic growth phase may also play an important role in improving succinate production.  相似文献   

18.
19.
20.
Propidium monoazide (PMA) was optimized to discriminate between viable and dead Bacteroides fragilis cells and extracellular DNA at different concentrations of solids using quantitative PCR. Conditions of 100 μM PMA and a 10-min light exposure also excluded DNA from heat-treated cells of nonculturable Bacteroidales in human feces and wastewater influent and effluent.The aim of microbial source tracking (MST) methods is to identify, and in some cases quantify, the dominant sources of fecal contamination in surface waters and groundwater (2, 16). One of the most promising library- and cultivation-independent approaches utilizes fecal Bacteroidales bacteria and quantitative PCR (qPCR) assays to measure gene copies of host-specific genetic markers for 16S rRNA (4, 5, 10, 14). Currently, molecular assays do not directly discriminate between viable and nonviable cells since DNA of both live and dead cells and extracellular DNA can be amplified. Consequently, source tracking data based on detection of genetic markers by PCR cannot distinguish between recent and past contamination events since DNA of selected pathogens can persist after cell death for more than 3 weeks (6). Hence, it would be preferable to detect host-specific markers in viable cells of Bacteroidales bacteria, which are strictly anaerobic microorganisms and unlikely to survive in water.Previous studies have suggested the use of intercalating DNA-binding chemicals combined with PCR to inhibit PCR amplification of DNA derived from dead cells (8, 9, 11, 15). For example, ethidium monoazide (EMA) has been investigated as a means of reducing the PCR signal from DNA originating from dead bacterial cells (7, 15, 19). However, the use of EMA prior to DNA extraction has been found to result in a significant loss of the genomic DNA of viable cells in the case of Escherichia coli 0157:H7, Campylobacter jejuni, and Listeria monocytogenes (3, 7). Recently propidium monoazide (PMA) has been proposed as a more selective agent, penetrating only dead bacterial cells but not viable cells with intact membranes (8). EMA/PMA in combination with PCR or qPCR has been applied to identify viable food-borne pathogens in a simple matrix (3, 7, 8, 11), and possible restrictions in the use of PMA in environmental samples were reported (9, 19). Yet the feasibility of applying PMA in environmental samples or MST studies using fecal Bacteroidales bacteria has not been systematically studied. Any meaningful application of EMA or PMA in stool or natural water samples must consider potential interferences due to particulate matter present in the environmental matrix. Similarly, procedures for the concentration of large volumes of water samples to simultaneously monitor pathogens and MST identifiers can lower the limit of detection (4, 12), but they concentrate solids or other inhibitors of quantitative PCR (qPCR) as well, which might interfere in the covalent binding of PMA to DNA.The objectives of this study were, therefore, the following: (i) to evaluate the applicability of PMA-qPCR methods to detect culturable Bacteroides fragilis, (ii) to determine the feasibility of PMA-qPCR analysis for environmental samples containing different concentrations of solids, and (iii) to validate the utility of the PMA-qPCR method for the detection of fecal Bacteroidales bacteria in defined live and heat-treated mixtures of human feces and in wastewater treatment plant influent and effluent.Pure cultures of Bacteroides fragilis (ATCC 25285) were grown in thioglycolate broth (Anaerobe System, Morgan Hill, CA) under anaerobic conditions in GasPak anaerobic jars (Becton Dickinson Microbiology Systems, Cockeysville, MD). The solids were obtained by hollow-fiber ultrafiltration as described previously (12, 13). Ultrasonification and heat sterilization in an autoclave were used for removing attached bacteria or DNA from solids and inactivating residual DNA. Finally, the solids were resuspended with 1× phosphate-buffered saline (PBS) solution to 100 mg liter−1 or 1,000 mg liter−1 of suspended solids. The concentration of total suspended solids (TSS) was measured using method 2450 C (1). Next, 1 ml of broth medium containing 2 × 109 viable or 2 × 108 heat-treated B. fragilis cells, which had been exposed at 80°C for 20 min, was spiked into 1× PBS buffer solutions containing 0 mg liter−1, 100 mg liter−1, or 1,000 mg liter−1 of TSS. Before the cells were spiked, 1 ml of Bacteroides fragilis cell suspension was enumerated with the Live/Dead BacLight bacterial viability kit (Molecular Probes Inc., Eugene, OR) using a hemacytometer and an Axioskop 2 Plus epifluorescence microscope (Zeiss, Thornwood, NY) equipped with two filter sets (fluorescein isothiocyanate and Texas Red). The inoculated samples were incubated under anaerobic conditions in GasPak anaerobic jars (Becton Dickinson Microbiology Systems, Cockeysville, MD) for 4 h at 20°C to allow sufficient time for the cells to sorb to solids.A fresh human fecal specimen was obtained from a healthy adult. Two grams of feces was suspended in 25 ml 1× PBS. The fecal suspension was diluted 1:10 and 1:100 in a 1× PBS solution, and aliquots were subjected to heat treatment at 80°C for 20 min. The heat-treated fecal portions were mixed with fresh diluted samples (1:10 and 1:100 dilutions) in defined ratios, with fresh feces representing 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the total, respectively. Effluent and influent water samples were collected in sterile 2-liter bottles from the University of California, Davis, wastewater treatment plant. The effluent samples were concentrated to approximately 200 ml by hollow-fiber ultrafiltration (12).PMA (Biotium Inc., Hayward, CA) was prepared, stored, and used as described in previous studies (8, 9), but PMA concentrations and light exposure time were varied to determine the optimal condition of PMA-qPCR; the PMA concentrations were 2 μM, 6 μM, 20 μM, and 100 μM. Light exposure times were 1 min, 5 min, 10 min, and 20 min. Genomic DNA was extracted using the FastDNA spin kit for soil (Biomedicals, Solon, OH). Cell lysis was achieved by bead beating using a bead mill Minibread beater (Biospec Products Inc., Bartlesville, OK) at 2,400 rpm for 20 s. Otherwise, DNA extraction was performed according to the manufacturer''s instructions. TaqMan probe and primer assays targeting the rRNA genes of all fecal Bacteroidales bacteria (BacUni-UCD) and mixed human-specific Bacteroidales bacteria (BacHum-UCD), developed by Kildare et al. (4), were used to detect and quantify fecal Bacteroidales bacteria present in fecal and (waste)water samples.We explored the ability of PMA-qPCR to discriminate between viable and heat-killed cells at different solids concentrations using Bacteroides fragilis cultures (Fig. (Fig.1).1). PMA did not influence the PCR amplification of DNA derived from viable cells when no solids were present (TSS = 0 mg liter−1) (Fig. (Fig.1A).1A). The level of PMA concentration slightly affected the mean cycle threshold differences (ΔCT) of viable cells at higher solids concentrations (TSS = 100 and 1,000 mg liter−1) (Fig. 1C and E). The signal reductions in the amplification of heat-killed cells were a function of both the PMA concentration and exposure time (Fig. 1B, D, and F). Lower solids concentrations did not inhibit the efficacy of discrimination from heat-killed cells. However, solids at 1,000 mg liter−1 affected the amplification of DNA derived from heat-killed cells. Higher solids concentrations affected the suppression of PCR amplification from heat-treated cells by interfering with the cross-linking of PMA. In agreement with previous reports, the number of viable Bacteroides fragilis cells was underestimated in our study when EMA-treated and untreated samples containing only viable cells were compared because mean ΔCT values were as high as 10 (data not shown). In contrast to EMA, PMA seems to not penetrate live cells, since higher selectivity of PMA is most probably associated with the higher charge of the molecule (8).Open in a separate windowFIG. 1.Effect of PMA on amplification of BacUni-UCD universal marker in viable and dead Bacteroides fragilis cells with different concentrations of solids. The contour lines represented ΔCT values and were generated by the Origin Pro 8 software program. The mean cycle threshold differences (ΔCT) were calculated by subtracting CT values obtained without PMA treatment from CT values obtained with PMA treatment. (A and B) ΔCT for viable cells (A) or dead cells (B) in the absence of added solids. (C and D) ΔCT for viable cells (C) or dead cells (D) at a solids concentration of 100 mg liter−1. (E and F) ΔCT for viable cells (E) or dead cells (F) at a solids concentration of 1,000 mg liter−1.A factorial three-way analysis of variance including the PMA concentration, exposure time, and TSS concentration was performed to determine the interferences of solids and the optimal PMA-qPCR condition in the differentiation of viable cells from dead cells (Table (Table1).1). The mean ΔCT of viable cells in the PMA experiments was slightly influenced by the PMA concentration (P = 0.05) in the absence of solids (TSS = 0 mg liter−1), but the effect was biologically insignificant (mean ΔCT = 0.004). The PMA concentration had a significant effect on ΔCT values for both viable and dead cells in the presence of higher solids concentrations (TSS = 100 and 1,000 mg liter−1), as shown in Table Table1.1. However, the effect of exposure time in PMA treatment was insignificant at a TSS concentration of 1,000 mg liter−1 (P > 0.4). The solids concentration caused significantly different ΔCT values for viable and dead cells in the PMA treatments (P < 0.001) as determined by factorial three-way analysis. The greatest differences in the mean ΔCT values between viable and dead cells were seen at 100 μM of PMA and with a 10-min exposure time, as determined by Tukey''s comparison test, for TSS concentrations of 100 mg liter−1 and 1,000 mg liter−1. Ideally, shorter light exposure and a lower concentration of dye can minimize the penetration of live cells. However, these conditions were not compatible with sufficient inhibition of amplification of DNA from dead cells for PMA treatment.

TABLE 1.

Statistical analysis for differences (ΔCT) between nontreatment and PMA treatment for experiments where Bacteroides fragilis was spikeda
TSS concn (mg liter−1)FactorEffect of factor with PMA treatment
Viable Bacteroides fragilis
Dead Bacteroides fragilis
Mean ΔCTSDdfbFcP valuedMean ΔCTSDdfbFcP valued
0Conc (μM)0.0030.79232.770.05012.293.78344.040.001
Time (min)0.0030.92630.060.98012.293.21323.790.001
Interaction91.920.08791.490.209
100Conc (μM)0.910.935311.440.00111.924.76315.050.001
Time (min)0.910.961310.090.00111.925.9631.360.274
Interaction91.800.11190.970.484
1,000Conc (μM)0.220.702312.100.0016.493.05348.900.001
Time (min)0.220.96330.860.4726.496.4930.880.464
Interaction90.600.78491.130.373
Open in a separate windowaA general linear model, which is the foundation for the t test, analysis of variance, regression analysis, and multivariate methods including factor analysis, was used to analyze the effects of the PMA concentration, exposure time, and interaction at different concentrations of solids.bDegrees of freedom.cThe statistic used to test the hypothesis that the variance of a factor is equal to zero.dThe P value is the smallest level of significance that would lead to rejection of the null hypothesis with the given data. We chose the common α-level of 0.05 to determine an acceptable level of significance.The factorial design study revealed that the mean ΔCT of B. fragilis cells was a function of both the concentration and the exposure time. An optimal set of conditions consisted of applying PMA at 100 μM for a 10-min exposure time. By comparison, in the case of E. coli 0157:H7, a PMA concentration of 50 μM was sufficient for avoiding a potential DNA loss from viable cells, but a longer incubation time (15 min) for the PMA cross-linking step and a higher PMA concentration (240 μM) resulted in a moderate DNA loss (8). Yet a factorial design was not employed in that study.PMA-qPCR was applied to defined mixtures of viable and heat-treated cells prepared from fresh human stool samples. PMA-qPCR resulted in selective exclusion of DNA from heat-treated stool, and there was no effect on PCR amplification from fresh feces. Gene copy numbers for human-specific Bacteroidales detected by BacHum-UCD were directly related to the percentage of fresh feces present in 1:10 (higher TSS content) and 1:100 (lower TSS content) dilutions of fecal material, with R2 values of 0.98 and 0.88, respectively (Fig. 2A and B). PMA also suppressed the signals from heat-treated feces, with a reduction in the number of gene copies detected of 2.5 logs in 1:10 dilutions of fecal samples and 3.2 logs in 1:100 dilutions of fecal samples, respectively. The greater variability in the data at the lower feces concentration and hence lower target numbers for PMA-qPCR would suggest that there may be some penetration of PMA into undamaged cells, an effect that was not noticeable when there were many cells present. A close look at Fig. Fig.2B2B reveals that the relationship is not perfectly represented by a linear fit, hence the lower R2 value. However, the standard deviation of CT values for different percentages of fresh fecal material ranged from 0.52 to 1.17, an acceptable value which would not significantly affect the interpretation of the linear relationship.Open in a separate windowFIG. 2.Effect of PMA treatments at 100 μM and a 10-min light exposure on PCR amplification in human fecal samples containing defined ratios of fresh and heat-treated feces. The black squares (▪) denote a 1:10 dilution of fecal material, and the white circles (○) denote a 1:100 dilution of fecal material. The error bars represent standard deviations for three samples. (A) Least-squares linear regression between the concentration of BacHum-UCD marker and defined ratios of 10-fold-diluted fresh and heat-treated feces. (B) Least-squares linear regression between the concentration of the BacHum-UCD marker and defined ratios of 100-fold-diluted fresh and heat-treated feces.Influent and effluent water samples from the University of California, Davis, wastewater treatment plant were analyzed with BacUni-UCD and BacHum-UCD Bacteroidales molecular markers (4) to evaluate the PMA-qPCR method in environmental samples. In the influent samples, the concentration of viable and dead Bacteroidales cells was 7.6 × 106 gene copies/ml, compared to 2.3 × 106 gene copies/ml for viable Bacteroidales bacteria alone, as determined by PMA-qPCR (Fig. (Fig.3).3). There was a significant difference between results with PMA treatment and those with no treatment for both gene copies/ml and the CT number (P < 0.01), yet this result nonetheless indicates that many Bacteroidales cells detected in the influent were viable. In general, the residence time in a sewer network is less than 24 h, and even though Bacteroidales bacteria are anaerobic organisms, they appear to be somewhat protected in the wastewater collection system, perhaps due to the formation of oxygen gradients in solids. A 2.5-log reduction of human-specific Bacteroidales DNA from influent samples to effluent samples was observed, but human-specific Bacteroidales DNA was still present at 104 gene copies ml−1 in effluent samples after UV treatment when no PMA treatment was applied (Fig. (Fig.3).3). Similarly, the concentration of the universal Bacteroidales gene marker BacUni-UCD was 104 gene copies ml−1 in effluent after a 3-log reduction during wastewater treatment (data not shown). As determined by PMA-qPCR, 30% of Bacteroidales cells containing the human-specific molecular marker BacHum-UCD were still viable in influent samples, whereas only human-specific Bacteroidales DNA but no viable cells were detected in effluent samples (Fig. (Fig.3).3). This result can be explained by the highly oxygenated environment in the aeration tank of the wastewater treatment plant and a typical cell residence time in the activated sludge process of 3 to 15 days (18), followed by UV treatment. The total coliform count in the effluent was less than 2.2 most probable number/100 ml. Consequently, the absence of viable Bacteroidales cells in the effluent would be expected.Open in a separate windowFIG. 3.Comparison of Bacteroidales gene copies determined using the BacHum-UCD assay in the presence and absence of PMA. Wastewater treatment influent, heat-treated influent, and effluent after UV disinfection were analyzed by quantitative PCR. The effluent was concentrated from 2 liters to 200 ml by hollow-fiber ultrafiltration (12), and DNA was extracted from the concentrated effluent and the influent samples. SLOD, sample limit of detection.A combination of large-volume water filtration and qPCR assays to simultaneously detect pathogens and MST molecular markers in water has been successful in lowering sample limits of detection and in improving detection of target pathogens present at low concentrations (4, 12, 16). However, the viability of target bacteria must be addressed to ensure broad application of nucleic-acid-based methods to environmental monitoring. A recent study reported that a limitation regarding PMA treatment was observed in samples with higher solid contents such as sediments and some environmental samples during denaturing gradient gel electrophoresis analysis of viable cells (9). Wagner et al. (19) suggested that the particles of diluted fermentor sludge could inhibit the cross-linking step when the chemicals should be light activated, since the radiation probably cannot penetrate the liquid. Similarly, the presence of eukaryotic DNA in stool samples and that of various inhibitors in matrices with a high solid content, like storm water, can hamper sensitivity in distinguishing viable cells in the application of PMA-qPCR. In our hands, PMA-qPCR was successful at relatively high solids concentrations (TSS = 1,000 mg liter−1) only after optimization.In a recent watershed study, MST data using qualitative (presence/absence) markers of bovine-specific (CF128) and human-specific (HF183) Bacteroidales genotypes were more reliable on high-flow samples with higher concentrations of culturable fecal indicators and could not discriminate precisely between livestock- and human-derived feces in the larger land use pattern (17). The reason for this outcome may have been the use of nonquantitative MST data and/or the presence of free DNA or extracellular DNA, which can persist in marine water, freshwater, and sediment for up to 55 days, 21 days, or 40 days, respectively (6). Significant concentrations of dissolved DNA have been found in marine water, freshwater, and sediments at concentrations ranging from 1 μg to 80 μg liter−1 (6). It is also possible that a case of positive detection of a Bacteroidales genetic marker in a 2.5-μl creek sample using direct PCR without DNA extraction (5) could have been caused by the presence of free DNA and not by a recent fecal contamination event. PMA combined with qPCR assays for host-specific Bacteroidales genetic markers may be used in the future to simultaneously identify the sources of different fecal loadings and estimate recent and past fecal contamination by both measuring molecular markers in viable cells and separately quantifying their gene copies in dead cells and in extracellular DNA. This rapid and simple method should greatly advance the utility of Bacteroidales assays in microbial source tracking. Moreover, it could be an extremely useful method to determine survival of host-specific Bacteroidales cells or waterborne pathogens and their DNA, to estimate recent fecal contamination in water, and to inform remedial action plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号