首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
间充质干细胞(mesenchymal stem cells,MSCs)可以诱导分化成脂肪、软骨、骨骼和骨骼肌细胞,并可作为骨骼、软骨或肌肉移植中的再生干细胞,广泛应用于细胞治疗和组织工程。胚胎干细胞(embryonic stem cells,ESCs)具有体外培养无限增殖和多向分化的特性,能被诱导分化为机体几乎所有的细胞类型。该研究通过无血清条件下诱导食蟹猴ESCs形成类胚体(embryoid bodies,EBs),然后在血清条件下贴壁分化EBs成间充质前体细胞(mesenchymal precursor cells,MPCs),再经过长期体外培养,纯化和扩增MPCs。结果显示,纯化后的MPCs具有MSCs生物学特征,并能在体外诱导分化成脂肪细胞和骨细胞。将这些细胞皮下注射给SCID小鼠,并未发现形成肿瘤,提示食蟹猴ESCs来源的MPCs具有一定的安全性。  相似文献   

3.

Background

Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo.

Methodology and Principal Findings

Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation.

Conclusions and Significance

The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification.  相似文献   

4.
胚胎干细胞体外分化为多巴胺能神经元   总被引:1,自引:0,他引:1  
近年来,胚胎干细胞在体外分化为多巴胺能神经元方面取得了重大突破,这对神经发生的基础性研究和神经细胞移植具有重要意义。现对胚胎干细胞体外定向诱导分化为多巴胺能神经元的方法、相关细胞因子及检测鉴定等方面进行了分析和比较,并探讨了当前存在的问题和今后发展的方向。  相似文献   

5.

Background

We have previously demonstrated that stem cells isolated from fetal porcine skin have the potential to form oocyte-like cells (OLCs) in vitro. However, primordial germ cells (PGCs), which must also be specified during the stem cell differentiation to give rise to these putative oocytes at more advanced stages of culture, were not systematically characterized. The current study tested the hypothesis that a morphologically distinct population of cells derived from skin stem cells prior to OLC formation corresponds to putative PGCs, which differentiate further into more mature gametes.

Methodology/Principal Findings

When induced to differentiate in an appropriate microenvironment, a subpopulation of morphologically distinct cells, some of which are alkaline phosphatase (AP)-positive, also express Oct4, Fragilis, Stella, Dazl, and Vasa, which are markers indicative of germ cell formation. A known differentially methylated region (DMR) within the H19 gene locus, which is demethylated in oocytes after establishment of the maternal imprint, is hypomethylated in PGC-like cells compared to undifferentiated skin-derived stem cells, suggesting that the putative germ cell population undergoes imprint erasure. Additional evidence supporting the germ cell identity of in vitro-generated PGC-like cells is that, when labeled with a Dazl-GFP reporter, these cells further differentiate into GFP-positive OLCs.

Significance

The ability to generate germ cell precursors from somatic stem cells may provide an in vitro model to study some of the unanswered questions surrounding early germ cell formation.  相似文献   

6.
原始生殖细胞是用做分离和克隆胚胎干细胞的一种新的细胞资源。本研究将30-45日龄的蒙古绵羊胚胎生殖嵴及其临近组织用机械剪碎和胰蛋白酶+EDTA消化处理,添加DMEM(低糖)+10%FBS(犊牛血清)、38.0℃、5%CO2和饱和湿度条件下进行培养。其结果:未加任何细胞生长因子的情况下与其胎儿成纤维细胞共培养的方式也能分离得到类胚胎干细胞集落。这些集落细胞经多次克隆传代具有胚胎干细胞的诸多特征,如:具有连续传代的能力,细胞集落有典型鸟巢状结构,AKP染色呈阳性,核型分析结果染色体正常等。这些表明该细胞具有多能性,是绵羊类ES细胞。  相似文献   

7.
猕猴胚胎干细胞的诱导分化和凋亡   总被引:1,自引:0,他引:1  
采用单层培养法研究维生素A酸(RA)、神经生长因子(NGF)、上皮生长因子(EGF)和碱性成纤维生长因子(bFGF)对猕猴胚胎干细胞系R366.4的诱导分化和凋亡的作用。结果表明:①不添加任何生长因子的条件下,细胞分化不定向,各种细胞所占的比例表现出明显的随机性;②添加单一生长因子能促进细胞的分化进程,并使某一类或某几类的分化细胞比例上升,RA和NGF均能促进神经样细胞的形成,EGF促进内皮样细胞的形成,bFGF提高成纤维样细胞的比例;③在分化的过程中伴有细胞早期和晚期凋亡的发生,RA和NGF可增加细胞凋亡的数量。这种由生长因子诱导的动物胚胎干细胞的分化可能存在种间差异。  相似文献   

8.
Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells.  相似文献   

9.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.  相似文献   

10.
小鼠胚胎干细胞(ESC)在体外可以分化为多种细胞类型,其中包括各阶段的生殖细胞,甚至精细胞和成熟卵母细胞。ESC向生殖细胞分化的效率受到包括生长因子、激素和体细胞等多种因素的影响,在体外形成的是雌性配子还是雄性配子与ESC是XX型还是XY型没有必然联系。简要综述了小鼠生殖细胞在体内外的分化发育、性别决定和增殖等,并总结和展望了ESC向生殖细胞分化研究面临的问题和应用前景。  相似文献   

11.
Retinoic acid is a widely used factor in both mouse and human embryonic stem cells. It suppresses differentiation to mesoderm and enhances differentiation to ectoderm. Fibroblast growth factor 2 (FGF2) is widely used to induce differentiation to neurons in mice, yet in primates, including humans, it maintains embryonic stem cells in the undifferentiated state. In this study, we established an FGF2 low-dose-dependent embryonic stem cell line from cynomolgus monkeys and then analyzed neural differentiation in cultures supplemented with retinoic acid and FGF2. When only retinoic acid was added to culture, neurons differentiated from FGF2 low-dose-dependent embryonic stem cells. When both retinoic acid and FGF2 were added, neurons and astrocytes differentiated from the same embryonic stem cell line. Thus, retinoic acid promotes the differentiation from embryonic stem cells to neuroectoderm. Although FGF2 seems to promote self-renewal in stem cells, its effects on the differentiation of stem cells are influenced by the presence or absence of supplemental retinoic acid.Abbreviations: EB, embryoid body; ES, embryonic stem; ESM, embryonic stem cell medium; FGF, fibroblast growth factor; GFAP, glial fibrillary acidic protein; LIF, leukemia inhibitory factor; MBP, myelin basic protein; RA, retinoic acid; SSEA, stage-specific embryonic antigen; TRA, tumor-related antigenPluripotent stem cells are potential sources of material for cell replacement therapy and are useful experimental tools for in vitro models of human disease and drug screening. Embryonic stem (ES) cells are capable of extensive proliferation and multilineage differentiation, and thus ES-derived cells are suitable for use in cell-replacement therapies.18,23 Reported ES cell characteristics including tumorigenic potential, DNA methylation status, expression of imprinted genes, and chromatin structure were elucidated by using induced pluripotent stem cells.2,11,17 Because the social expectations of regeneration medicine are growing, we must perform basic research with ES cells, which differ from induced pluripotent stem cells in terms of origin, differentiation ability, and epigenetic status.2,8Several advances in research have been made by using mouse ES cells. Furthermore, primate ES cell lines have been established from rhesus monkeys (Macaca mulatta),24 common marmosets (Callithrix jacchus),25 cynomolgus monkeys (M. fascicularis),20 and African green monkeys (Chlorocebus aethiops).19 Mouse and other mammalian ES cells differ markedly in their responses to the signaling pathways that support self-renewal.8,28 Mouse ES cells require leukemia inhibitory factor (LIF)–STAT3 signaling.14 In contrast, primate ES cells do not respond to LIF. Fibroblast growth factor 2 (FGF2) appears to be the most upstream self-renewal factor in primate ES cells. FGF2 also exerts its effects through indirect mechanisms, such as the TGFβ–Activin–Nodal signaling pathway, in primate ES cells.21 In addition to the biologic similarities between monkeys and humans, ES cells derived from cynomolgus monkeys or human blastocysts have extensive similarities that are not apparent in mouse ES cells.8,14,21,28 Numerous monkey ES cell lines are now available, and cynomolgus monkeys are an efficient model for developing strategies to investigate the efficacy of ES-cell–based medical treatments in humans.Several growth factors and chemical compounds, including retinoic acid (RA),4,9,13,22,26 FGF2,9,10,16,22 epidermal growth factor,9,22 SB431542,1,4,10 dorsomorphin,10,27 sonic hedgehog,12,13,16,27,29 and noggin,1,4,9,27 are essential for the differentiation and proliferation or maintenance of neural stem cells derived from primate ES cells. Of these factors, active RA signaling suppresses a mesodermal fate by inhibiting Wnt and Nodal signaling pathways during in vitro culture and leads to neuroectoderm differentiation in ES cells.4,13,26 RA is an indispensable factor for the specialization to neural cells. FGF2 is important during nervous system development,12 and FGF2 and RA both are believed to influence the differentiation to neural cells. The current study was done to clarify the mechanism of RA and FGF2 in the induction of differentiation along the neural lineage.We recently established a monkey ES cell line that does not need FGF2 supplementation for maintenance of the undifferentiated state. This ES cell line allowed us to study the role of differentiation to neural cells with RA and enabled us to compare ES cell differentiation in the context of supplementation with RA or FGF2 in culture. To this end, we established a novel cynomolgus monkey cell line derived from ES cells and maintained it in an undifferentiated state in the absence of FGF2 supplementation.  相似文献   

12.
Figla基因过表达促进小鼠胚胎干细胞向雌性生殖细胞分化   总被引:1,自引:0,他引:1  
生殖系a因子(Figla)是最早表达的生殖细胞特异性转录因子之一,对卵泡的发育、Zp基因的表达和透明带的形成具有调节作用. Figla基因异常会引起卵巢早衰的发生. 本研究通过 PCR自小鼠基因组中扩增出Figla基因,将其克隆到真核报告载体pDsRed1 N1,构建了携带609 bp 的Figla重组载体pDsRed1 N1 Figla. 用该载体转染小鼠胚胎干细胞(mESCs)系J1、小鼠成纤维细胞系NIH 3T3、小鼠畸胎瘤细胞P19和小鼠精原细胞系GC1,在荧光显微镜下观察红色荧光蛋白(RFP)在细胞中的表达,同时检测转染细胞中Figla基因及其它生殖细胞特异性基因的表达. 结果显示,转染2 d,mESCs内Figla总表达量明显增加,且内源性表达量亦有所提高,即转入的外源性Figla基因可以促进内源性Figla的启动和表达. 免疫荧光染色显示,表达RFP 的细胞同时表达生殖特异性基因Vasa,减数分裂特异性基因Stra8、Scp3及卵母细胞标志基因Zp3. 通过QRT PCR检测发现,在转染3 d的细胞中,Vasa、Scp3和Zp1的表达较对照组均有明显上调,而Oct4和Stra8的表达量下降. 研究表明,Figla基因对生殖特异性基因的表达具有调控作用,可以激活雌性生殖基因表达,为更清楚地了解Figla基因在生殖细胞生长发育过程中的调控机制,以及发现该基因在生殖细胞中的新功能奠定了基础.  相似文献   

13.
Stem cell maintenance depends on their surrounding microenvironment, and aberrancies in the environment have been associated with tumorigenesis. However, it remains to be elucidated whether an environmental aberrancy can act as a carcinogenic stress for cellular transformation of differentiating stem cells into cancer stem cells. Here, utilizing mouse embryonic stem cells as a model, it was illustrated that environmental aberrancy during differentiation leads to the emergence of pluripotent cells showing cancerous characteristics. Analogous to precancerous stages, DNA lesions were spontaneously accumulated during embryonic stem cell differentiation under aberrational environments, which activates barrier responses such as senescence and apoptosis. However, overwhelming such barrier responses, piled-up spheres were subsequently induced from the previously senescent cells. The sphere cells exhibit aneuploidy and dysfunction of the Arf-p53 module as well as enhanced tumorigenicity and a strong self-renewal capacity, suggesting development of cancerous stem cells. Our current study suggests that stem cells differentiating in an aberrational environment are at risk of cellular transformation into malignant counterparts.  相似文献   

14.
15.
Pluripotent embryonic stem cells (ESCs) are able to differentiate into all cell types in the organism including cortical neurons. To follow the dynamic generation of progenitors of the dorsal forebrain in vitro, we generated ESCs from D6-GFP mice in which GFP marks neocortical progenitors and neurons after embryonic day (E) 10.5. We used several cell culture protocols for differentiation of ESCs into progenitors and neurons of the dorsal forebrain. In cell culture, GFP-positive cells were induced under differentiation conditions in quickly formed embryoid bodies (qEBs) after 10–12 day incubation. Activation of Wnt signaling during ESC differentiation further stimulated generation of D6-GFP-positive cortical cells. In contrast, differentiation protocols using normal embryoid bodies (nEBs) yielded only a few D6-GFP-positive cells. Gene expression analysis revealed that multiple components of the canonical Wnt signaling pathway were expressed during the development of embryoid bodies. As shown by immunohistochemistry and quantitative qRT-PCR, D6-GFP-positive cells from qEBs expressed genes that are characteristic for the dorsal forebrain such as Pax6, Dach1, Tbr1, Tbr2, or Sox5. qEBs culture allowed the formation of a D6-GFP positive pseudo-polarized neuroepithelium with the characteristic presence of N-cadherin at the apical pole resembling the structure of the developing neocortex.  相似文献   

16.
Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.  相似文献   

17.
小鼠作为发育机制的模式动物,其生殖细胞分化与发育的研究一直是发育生物学研究的重点之一。主要综述了小鼠原始生殖细胞的起源、迁移与增殖的机制,以及原始生殖细胞向生殖细胞的分化,卵母细胞与精子的发生与发育机理,讨论了胚胎干细胞向生殖细胞体外诱导分化以及生殖细胞体外培养的应用前景。  相似文献   

18.
19.
胚胎干细胞体外诱导分化   总被引:2,自引:0,他引:2  
胚胎干细胞能在体外长期不断自我更新,具有高度分化潜能,可分化成胎儿和成体的几乎所有类型的细胞,如心肌细胞、神经细胞、上皮细胞、肝细胞、血细胞、胰岛细胞、脂肪细胞及生殖细胞等.在细胞治疗和组织器官替代治疗、发育生物学等的研究中将具有广阔的应用前景.目前已有多种胚胎干细胞体外定向诱导的报道.本文从体外诱导分化影响因素和几种主要诱导细胞类型进行分析和总结,为胚胎干细胞的诱导分化研究提供参考资料.  相似文献   

20.
胚胎干细胞体外诱导分化   总被引:1,自引:0,他引:1  
胚胎干细胞能在体外长期不断自我更新,具有高度分化潜能,可分化成胎儿和成体的几乎所有类型的细胞,如心肌细胞、神经细胞、上皮细胞、肝细胞、血细胞、胰岛细胞、脂肪细胞及生殖细胞等。在细胞治疗和组织器官替代治疗、发育生物学等的研究中将具有广阔的应用前景。目前已有多种胚胎干细胞体外定向诱导的报道。本文从体外诱导分化影响因素和几种主要诱导细胞类型进行分析和总结,为胚胎干细胞的诱导分化研究提供参考资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号