首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemically synthesized small interfering RNAs (siRNAs) can specifically knock-down expression of target genes via RNA interference (RNAi) pathway. To date, the length of synthetic siRNA duplex has been strictly maintained less than 30 bp, because an early study suggested that double-stranded RNAs (dsRNAs) longer than 30 bp could not trigger specific gene silencing due to the induction of nonspecific antiviral interferon responses. Contrary to the current belief, here we show that synthetic dsRNA as long as 38 bp can result in specific target gene silencing without nonspecific antiviral responses. Using this longer duplex structure, we have generated dsRNAs, which can simultaneously knock-down expression of two target genes (termed as dual-target siRNAs or dsiRNAs). Our results thus demonstrate the structural flexibility of gene silencing siRNAs, and provide a starting point to construct multifunctional RNA structures. The dsiRNAs could be utilized to develop a novel therapeutic gene silencing strategy against diseases with multiple gene alternations such as viral infection and cancer.  相似文献   

2.
RNA Interference (RNAi) effectors have been used to inhibit rogue RNAs in mammalian cells. However, rapidly evolving sequences such as the human immunodeficiency virus type 1 (HIV-1) require multiple targeting approaches to prevent the emergence of escape variants. Expressed long hairpin RNAs (lhRNAs) have recently been used as a strategy to produce multiple short interfering RNAs (siRNAs) targeted to highly variant sequences. We aimed to characterize the ability of expressed lhRNAs to generate independent siRNAs that silence three non-contiguous HIV-1 sites by designing lhRNAs comprising different combinations of siRNA-encoding sequences. All lhRNAs were capable of silencing individual target sequences. However, silencing efficiency together with concentrations of individual lhRNA-derived siRNAs diminished from the stem base (first position) towards the loop side of the hairpin. Silencing efficacy against HIV-1 was primarily mediated by siRNA sequences located at the base of the stem. Improvements could be made to first and second position siRNAs by adjusting spacing arrangements at their junction, but silencing of third position siRNAs remained largely ineffective. Although lhRNAs offer advantages for combinatorial RNAi, we show that good silencing efficacy across the span of the lhRNA duplex is difficult to achieve with sequences that encode more than two adjacent independent siRNAs.  相似文献   

3.
4.
5.
In plants, small RNA-guided processes referred to as RNA silencing control gene expression and serve as an efficient antiviral mechanism. Plant viruses are inducers and targets of RNA silencing as infection involves the production of functional virus-derived small interfering RNAs (siRNAs). Here we investigate the structural and genetic components influencing the formation of Tobacco rattle virus (TRV)-derived siRNAs. TRV siRNAs are mostly 21 nucleotides in length and derive from positive and negative viral RNA strands, although TRV siRNAs of positive polarity are significantly more abundant. This asymmetry appears not to correlate with the presence of highly structured regions of single-stranded viral RNA. The Dicer-like enzyme DCL4, DCL3, or DCL2 targets, alone or in combination, viral templates to promote synthesis of siRNAs of both polarities from all regions of the viral genome. The heterogeneous distribution profile of TRV siRNAs reveals differential contributions throughout the TRV genome to siRNA formation. Indirect evidence suggests that DCL2 is responsible for production of a subset of siRNAs derived from the 3' end region of TRV. TRV siRNA biogenesis and antiviral silencing are strongly dependent on the combined activity of the host-encoded RNA-dependent RNA polymerases RDR1, RDR2, and RDR6, thus providing evidence that perfectly complementary double-stranded RNA serves as a substrate for siRNA production. We conclude that the overall composition of viral siRNAs in TRV-infected plants reflects the combined action of several interconnected pathways involving different DCL and RDR activities.  相似文献   

6.
7.
Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.  相似文献   

8.
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects over 270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both an mRNA and a replication template, making it an attractive target for therapeutic approaches using short interfering RNA (siRNA). We have shown previously that double-stranded siRNA molecules designed to target the HCV genome block gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. However, we now show that this block is not complete. After several treatments with a highly effective siRNA, we have shown growth of replicon RNAs that are resistant to subsequent treatment with the same siRNA. However, these replicon RNAs were not resistant to siRNA targeting another part of the genome. Sequence analysis of the siRNA-resistant replicons showed the generation of point mutations within the siRNA target sequence. In addition, the use of a combination of two siRNAs together severely limited escape mutant evolution. This suggests that RNA interference activity could be used as a treatment to reduce the devastating effects of HCV replication on the liver and the use of multiple siRNAs could prevent the emergence of resistant viruses.  相似文献   

9.
Size selective recognition of siRNA by an RNA silencing suppressor   总被引:29,自引:0,他引:29  
Vargason JM  Szittya G  Burgyán J  Hall TM 《Cell》2003,115(7):799-811
RNA silencing in plants likely exists as a defense mechanism against molecular parasites such as RNA viruses, retrotransposons, and transgenes. As a result, many plant viruses have adapted mechanisms to evade and suppress gene silencing. Tombusviruses express a 19 kDa protein (p19), which has been shown to suppress RNA silencing in vivo and bind silencing-generated and synthetic small interfering RNAs (siRNAs) in vitro. Here we report the 2.5 A crystal structure of p19 from the Carnation Italian ringspot virus (CIRV) bound to a 21 nt siRNA and demonstrate in biochemical and in vivo assays that CIRV p19 protein acts as a molecular caliper to specifically select siRNAs based on the length of the duplex region of the RNA.  相似文献   

10.
Cheng J  Sagan SM  Jakubek ZJ  Pezacki JP 《Biochemistry》2008,47(31):8130-8138
Tombusviruses use a 19 kDa protein (p19) as a suppressor of the RNA silencing pathway during infection. The p19 protein binds to short-interfering RNA (siRNA) as a dimer and shows a high selectivity for short duplex RNAs over other RNA species. Since p19 can bind to synthetic and RNA silencing generated small RNAs with little sequence dependence and with size selectivity, this protein has utility as a tool for studying RNA silencing pathways in eukaryotes. However, the ability of p19 to serve as a tool for studying RNA silencing pathways may be complicated by the presence of other endogenous small RNAs such as micro-RNAs (miRNAs). To understand the importance of endogenous small RNA components with respect to p19's ability to bind to siRNAs, we examined the interactions of p19 with human miR-122, a 23-nucleotide duplex miRNA containing several mismatched base pairs that is highly abundant in the liver. The binding characteristics were compared with those of an siRNA optimized against the human kinase CSK. The binding studies were performed using fluorescence polarization experiments on duplex oligonucleotides containing Cy3 dye labels at the 5'-end of one of the strands of RNA as well as electrophoretic gel mobility shift assays. Both methods indicate that the synthetic siRNA with no mismatches in base pairing bound with >3-fold selectivity over that of miR-122. Our results suggest that p19 can distinguish between siRNAs and miRNA species, although the difference in binding constants is not so large that interactions with endogenous miRNAs can be totally ignored.  相似文献   

11.
The potential of RNA interference (RNAi) to inhibit virus propagation has been well established in recent years. In several studies, however, emergence of viral escape mutants after prolonged exposure to RNAi has been observed, raising a major hurdle for a possible therapeutic application of this strategy. Here, we report the design and characterisation of a vector that allows the simultaneous expression of two short hairpin RNAs (shRNAs), thereby maintaining high silencing activity even against a viral RNA bearing mutations in one of the target sites. Two short interfering RNAs (siRNAs) against the 3D-RNA dependent RNA polymerase of coxsackievirus B3 were identified that displayed efficient inhibition of virus propagation in HeLa cells and reduced the virus titre by up to 90%. We generated two expression vectors encoding these newly identified siRNAs and evaluated their silencing efficiency against the target gene in a reporter assay. Viral escape was then simulated by introducing a point mutation into either of the target sites. This substitution led to complete abrogation of silencing by the respective vector. To bypass this blockade of silencing, an siRNA double expression vector (SiDEx) was constructed to achieve simultaneous expression of both siRNAs from one plasmid. The silencing efficiency of both siRNAs generated by SiDEx was comparable to that of the individual mono-expression vectors. In contrast to the conventional expression vectors, SiDEx displayed substantial gene regulation also of the mutated target RNA. As our approach of expressing various shRNAs from one vector is based on a simple and universally applicable cloning strategy, SiDEx may be a helpful tool to achieve sustained silencing of viruses, ultimately reducing the risk of emergence of viable mutants. An additional application of SiDEx vectors will be the simultaneous knockdown of two targeted genes for functional studies.  相似文献   

12.
RNA silencing can be initiated upon dsRNA accumulation and results in homology-dependent degradation of target RNAs mediated by 21–23 nt small interfering RNAs (siRNAs). These small regulatory RNAs can direct RNA degradation via different routes such as the RdRP/Dicer- and the RNA-induced silencing complex (RISC)-catalysed pathways. The relative contribution of both pathways to degradation of target RNAs is not understood. To gain further insight in the process of target selection and degradation, we analysed production of siRNAs characteristic for Dicer-mediated RNA degradation during silencing of mRNAs and chimeric viral RNAs in protoplasts from plants of a transgenic tobacco silencing model line. We show that small RNA accumulation is limited to silencing target regions during steady-state mRNA silencing. For chimeric viral RNAs, siRNA production appears dependent on pre-established cellular silencing conditions. The observed siRNA accumulation profiles imply that silencing of viral target RNAs in pre-silenced protoplasts occurs mainly via a RISC-mediated pathway, guided by (pre-existing) siRNAs derived from cellular mRNAs. In cells that are not silenced at the time of infection, viral RNA degradation seems to involve Dicer action directly on the viral RNAs. This suggests that the silencing mechanism flexibly deploys different components of the RNA degradation machinery in function of the prevailing silencing status.  相似文献   

13.
14.
Silencing of hepatitis A virus infection by small interfering RNAs   总被引:3,自引:0,他引:3       下载免费PDF全文
Infection by hepatitis A virus (HAV) can cause acute hepatitis and, rarely, fulminant liver failure, in particular in patients chronically infected with hepatitis C virus. Based on our previous observation that small interfering RNAs (siRNAs) can silence translation and replication of the firefly luciferase-encoding HAV replicon, we now exploited this technology to demonstrate the effect of siRNAs on viral infection in Huh-7 cells. Freshly and persistently infected cells were transfected with siRNAs targeting various sites in the HAV nonstructural genes. Compared to a single application, consecutive siRNA transfections targeting multiple sequences in the viral genome resulted in a more efficient and sustained silencing effect than a single transfection. In most instances, multiple applications of a single siRNA led to the emergence of viral escape mutants with mutated target sites that rendered these genomes resistant to RNA interference (RNAi). Efficient and sustained suppression of the viral infectivity was achieved after consecutive applications of an siRNA targeting a computer-predicted hairpin structure. This siRNA holds promise as a therapeutic tool for severe courses of HAV infection. In addition, the results provide new insight into the structural bases for sequence-specific RNAi.  相似文献   

15.
RNA polymerase III (Pol III) expression systems for short hairpin RNAs (U6 shRNAs or chimeric VA1 shRNAs) or individually expressed sense/antisense small interfering RNA (siRNA) strands have been used to trigger RNA interference (RNAi) in mammalian cells. Here we show that individually expressed siRNA expression constructs produce 21-nucleotide siRNAs that strongly accumulate as duplex siRNAs in the nucleus of human cells, exerting sequence-specific silencing activity similar to cytoplasmic siRNAs derived from U6 or VA1-expressed hairpin precursors. In contrast, 29-mer siRNAs separately expressed as sense/antisense strands fail to elicit RNAi activity, despite accumulation of these RNAs in the nucleus. Our findings delineate different intracellular accumulation patterns for the three expression strategies and suggest the possibility of a nuclear RNAi pathway that requires 21-mer duplexes.  相似文献   

16.
17.
Argonaute (Ago) proteins form the core of RNA-induced silencing complexes (RISCs) and mediate small RNA-guided gene silencing. In RNAi, short interfering RNAs (siRNAs) guide RISCs to complementary target RNAs, leading to cleavage by the endonuclease Ago2. Noncatalytic Ago proteins, however, contribute to RNAi as well but cannot cleave target RNA and often generate off-target effects. Here we show that synthetic siRNA duplexes interact with all Ago proteins, but a functional RISC rapidly assembles only around Ago2. By stabilizing the siRNA duplex, we show that the noncatalytic Ago proteins Ago1, -3, and -4 can be selectively blocked and do not form functional RISCs. In addition, stabilized siRNAs form an Ago2-RISC more efficiently, leading to increased silencing activity. Our data suggest novel parameters for the design of siRNAs with selective activation of the endonuclease Ago2.  相似文献   

18.
19.
Luo Q  Kang Q  Song WX  Luu HH  Luo X  An N  Luo J  Deng ZL  Jiang W  Yin H  Chen J  Sharff KA  Tang N  Bennett E  Haydon RC  He TC 《Gene》2007,395(1-2):160-169
  相似文献   

20.
RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity. Prior work from our laboratory and others’ supports the potential to design highly specific siRNAs by limiting the promiscuity of their seed sequences (positions 2–8 of the small RNA), the primary determinant of off-targeting. Here, a bioinformatic approach to predict off-targeting potentials was established using publically available siRNA data from more than 50 microarray experiments. With this, we developed a specificity-focused siRNA design algorithm and accompanying online tool which, upon validation, identifies candidate sequences with minimal off-targeting potentials and potent silencing capacities. This tool offers researchers unique functionality and output compared with currently available siRNA design programs. Furthermore, this approach can greatly improve genome-wide RNAi libraries and, most notably, provides the only broadly applicable means to limit off-targeting from RNAi expression vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号