首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence.  相似文献   

2.
RNA regulators are critical for animal development, especially in the germ line where gene expression is often modulated by changes in mRNA stability, translation, and localization. In this paper, we focus on Caenorhabditis elegans LARP-1, a representative of one La-related protein (Larp) family found broadly among eukaryotes. LARP-1 possesses a signature La motif, which is an ancient RNA-binding domain, plus a second conserved motif, typical of LARP-1 homologs and therefore dubbed the LARP1 domain. LARP-1 appears to bind RNA in vitro via both the La motif and the LARP1 domain. larp-1 null mutants have an oogenesis defect reminiscent of hyperactive Ras-MAPK signaling; this defect is suppressed or enhanced by down- or up-regulating the Ras-MAPK pathway, respectively. Consistent with a role in down-regulating the Ras-MAPK pathway, larp-1 null mutants have higher than normal levels of selected pathway mRNAs and proteins. LARP-1 protein colocalizes with P bodies, which function in RNA degradation. We suggest that LARP-1 functions in P bodies to attenuate the abundance of conserved Ras-MAPK mRNAs. We also propose that the cluster of LARP-1 homologs may function generally to control the expression of key developmental regulators.  相似文献   

3.
4.
5.
6.
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3′OH-dependent trailer binding/protection and a UUU-3′OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3′OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.  相似文献   

7.
La-related proteins (LARPs) belong to an evolutionarily conserved family of factors with predicted roles in RNA metabolism. Here, we have analyzed the cellular interactions and function of LARP4B, a thus far uncharacterized member of the LARP family. We show that LARP4B is a cytosolic protein that accumulates upon arsenite treatment in cellular stress granules. Biochemical experiments further uncovered an interaction of LARP4B with the cytosolic poly(A) binding protein 1 (PABPC1) and the receptor for activated C Kinase (RACK1), a component of the 40S ribosomal subunit. Under physiological conditions, LARP4B co-sedimented with polysomes in cellular extracts, suggesting a role in translation. In agreement with this notion, overexpression of LARP4B stimulated protein synthesis, whereas knockdown of the factor by RNA interference impaired translation of a large number of cellular mRNAs. In sum, we identified LARP4B as a stimulatory factor of translation. We speculate that LARP4B exerts its function by bridging mRNA factors of the 3′ end with initiating ribosomes.  相似文献   

8.
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3′ UTRs and led to their neofunctionalization.  相似文献   

9.
10.
The Schizosaccharomyces pombe Mei2 gene encodes an RNA recognition motif (RRM) protein that stimulates meiosis upon binding a specific non-coding RNA and subsequent accumulation in a "mei2-dot" in the nucleus. We present here the first systematic characterization of the family of proteins with characteristic Mei2-like amino acid sequences. Mei2-like proteins are an ancient eukaryotic protein family with three identifiable RRMs. The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is the most highly conserved of the three RRMs. RRM3 also contains conserved sequence elements at its C-terminus not found in other RRM domains. Single copy Mei2-like genes are present in some fungi, in alveolates such as Paramecium and in the early branching eukaryote Entamoeba histolytica, while plants contain small families of Mei2-like genes. While the C-terminal RRM is highly conserved between plants and fungi, indicating conservation of molecular mechanisms, plant Mei2-like genes have changed biological context to regulate various aspects of developmental pattern formation.  相似文献   

11.
12.
13.
RNA recognition: towards identifying determinants of specificity.   总被引:56,自引:0,他引:56  
Members of a family of proteins containing a conserved approximately 80-amino acid RNA recognition motif (RRM) bind specifically to a wide variety of RNA molecules. Structural studies, in combination with sequence alignments, indicate the structural context of both conserved and non-conserved elements in the motif. These analyses suggest that all RRM proteins share a common fold and a similar protein-RNA interface, and that non-conserved residues contribute additional contacts for sequence-specific RNA recognition.  相似文献   

14.
A new family of cyclophilins with an RNA recognition motif (RRM) has members in vertebrates, roundworms and flatworms. We have identified a Drosophilacyclophilin, Dcyp33, with a high degree of amino acid sequence identity and similarity with other members of the family. Dcyp33 interacts through its RRM domain with the third PHD finger of trithorax. This interaction is conserved in the human homologues of these proteins, Cyp33 and MLL. Over expression of Dcyp33 in DrosophilaSL1 cells results in down-regulation of AbdominalB Hoxgene expression, mirroring the effect of human Cyp33 on the expression of human HOXgenes.  相似文献   

15.
In this report we describe the initial characterization of murine, human, and Drosophila hesr-1 (for hairy and enhancer of split related-1) a novel evolutionary conserved family of hairy/enhancer of split homologs. Hesr-1 cDNAs display features typical of hairy and enhancer of split-type bHLH proteins including a N-terminal bHLH domain a conserved orange domain immediately C-terminal to the bHLH region. Despite their similarity to known hairy/enhancer of split homologs, hesr-1 cDNAs are divergent members of the hairy and enhancer of split bHLH family since the degree of sequence identity within the bHLH and their nearest homologs are relatively low. Moreover, the tetrapeptide motif, WRPW, which is found in all hairy and enhancer of split family members, is not present in hesr-1. Rather, a variant of this motif, YRPW, is found. Analysis of embryonic murine hesr-1 expression by in situ hybridization reveals strong expression in the somitic mesoderm, the central nervous system, the kidney, the heart, nasal epithelium, and limbs indicating a role for hesr-1 in the development of these tissues. Like the enhancer of split cDNAs in Drosophila, we show that hesr-1 expression depends critically on signaling through the notch pathway in murine embryos, suggesting that aspects of hesr-1 regulation and function might also be evolutionary conserved.  相似文献   

16.
La is an RNA-processing-associated phosphoprotein so highly conserved that the human La protein (hLa) can replace the tRNA-processing function of the fission yeast La protein (Sla1p) in vivo. La proteins contain multiple trafficking elements that support interactions with RNAs in different subcellular locations. Prior data indicate that deletion of a nuclear retention element (NRE) causes nuclear export of La and dysfunctional processing of associated pre-tRNAs that are spliced but 5' and 3' unprocessed, with an accompanying decrease in tRNA-mediated suppression, in fission yeast. To further pursue these observations, we first identified conserved residues in the NREs of hLa and Sla1p that when substituted mimic the NRE deletion phenotype. NRE-defective La proteins then deleted of other motifs indicated that RNA recognition motif 1 (RRM1) is required for nuclear export. Mutations of conserved RRM1 residues restored nuclear accumulation of NRE-defective La proteins. Some RRM1 mutations restored nuclear accumulation, prevented disordered pre-tRNA processing, and restored suppression, indicating that the tRNA-related activity of RRM1 and its nuclear export activity could be functionally separated. When mapped onto an hLa structure, the export-sensitive residues comprised surfaces distinct from the RNA-binding surface of RRM1. The data indicate that the NRE has been conserved to mask or functionally override an equally conserved nuclear export activity of RRM1. The data suggest that conserved elements mediate nuclear retention, nuclear export, and RNA-binding activities of the multifunctional La protein and that their interrelationship contributes to the ability of La to engage its different classes of RNA ligands in different cellular locations.  相似文献   

17.
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin‐1‐dependent manner. ER‐anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury‐induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N‐terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin‐triggered pulmonary fibrosis in vivo. These findings reveal a novel anti‐fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.  相似文献   

18.
19.
The assembly of the U4 and U6 snRNPs into the U4/U6 di-snRNP is necessary for pre-mRNA splicing, and in Saccharomyces cerevisiae requires the splicing factor Prp24. We have identified a family of Prp24 homologs that includes the human protein SART3/p110nrb, which had been identified previously as a surface antigen in several cancers. Sequence conservation among the Prp24 homologs reveals the existence of a fourth previously unidentified RNA recognition motif (RRM) in Prp24, which we demonstrate is necessary for growth of budding yeast at 37 degrees C. The family is also characterized by a highly conserved 12-amino-acid motif at the extreme C terminus. Deletion of this motif in Prp24 causes a cold-sensitive growth phenotype and a decrease in base-paired U4/U6 levels in vivo. The mutant protein also has a reduced association with U6 snRNA in extract, and is unable to interact with the U6 Lsm proteins by two-hybrid assay. In vitro annealing assays demonstrate that deletion of the motif causes a defect in U4/U6 formation by reducing binding of Prp24 to its substrate. We conclude that the conserved C-terminal motif of Prp24 interacts with the Lsm proteins to promote U4/U6 formation.  相似文献   

20.
The conserved RNA binding protein La recognizes UUU-3'OH on its small nuclear RNA ligands and stabilizes them against 3'-end-mediated decay. We report that newly described La-related protein 4 (LARP4) is a factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). Yeast two-hybrid analysis and reciprocal immunoprecipitations (IPs) from HeLa cells revealed that LARP4 interacts with RACK1, a 40S ribosome- and mRNA-associated protein. LARP4 cosediments with 40S ribosome subunits and polyribosomes, and its knockdown decreases translation. Mutagenesis of the RNA binding or PABP interaction motifs decrease LARP4 association with polysomes. Several translation and mRNA metabolism-related proteins use a PAM2 sequence containing a critical invariant phenylalanine to make direct contact with the MLLE domain of PABP, and their competition for the MLLE is thought to regulate mRNA homeostasis. Unlike all ~150 previously analyzed PAM2 sequences, LARP4 contains a variant PAM2 (PAM2w) with tryptophan in place of the phenylalanine. Binding and nuclear magnetic resonance (NMR) studies have shown that a peptide representing LARP4 PAM2w interacts with the MLLE of PABP within the affinity range measured for other PAM2 motif peptides. A cocrystal of PABC bound to LARP4 PAM2w shows tryptophan in the pocket in PABC-MLLE otherwise occupied by phenylalanine. We present evidence that LARP4 expression stimulates luciferase reporter activity by promoting mRNA stability, as shown by mRNA decay analysis of luciferase and cellular mRNAs. We propose that LARP4 activity is integrated with other PAM2 protein activities by PABP as part of mRNA homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号