首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Enhanced lysosomal trafficking is associated with metastatic cancer. In an attempt to discover cancer relevant lysosomal motor proteins, we compared the lysosomal proteomes from parental MCF-7 breast cancer cells with those from highly invasive MCF-7 cells that express an active form of the ErbB2 (ΔN-ErbB2).

Methodology/Principal Findings

Mass spectrometry analysis identified kinesin heavy chain protein KIF5B as the only microtubule motor associated with the lysosomes in MCF-7 cells, and ectopic ΔN-ErbB2 enhanced its lysosomal association. KIF5B associated with lysosomes also in HeLa cervix carcinoma cells as analyzed by subcellular fractionation. The depletion of KIF5B triggered peripheral aggregations of lysosomes followed by lysosomal destabilization, and cell death in HeLa cells. Lysosomal exocytosis in response to plasma membrane damage as well as fluid phase endocytosis functioned, however, normally in these cells. Both HeLa and MCF-7 cells appeared to express similar levels of the KIF5B isoform but the death phenotype was weaker in KIF5B-depleted MCF-7 cells. Surprisingly, KIF5B depletion inhibited the rapamycin-induced accumulation of autophagosomes in MCF-7 cells. In KIF5B-depleted cells the autophagosomes formed and accumulated in the close proximity to the Golgi apparatus, whereas in the control cells they appeared uniformly distributed in the cytoplasm.

Conclusions/Significance

Our data identify KIF5B as a cancer relevant lysosomal motor protein with additional functions in autophagosome formation.  相似文献   

2.

Background

Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

Methodology/Principal Findings

The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

Conclusion

Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.  相似文献   

3.

Background

MiR-155 has emerged as an “oncomiR”, which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.

Results

The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.

Conclusions

TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.  相似文献   

4.

Background

Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles.

Methodology/Principal Findings

Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231) that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with Ki values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231.

Conclusions/Significance

Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is.  相似文献   

5.
6.
7.

Objective

The aim of this study was to explore the therapeutic effect of natural killer (NK) cells on human doxorubicin-sensitive and resistant breast adenocarcinoma.

Methods

Human doxorubicin-sensitive and resistant breast cancer cell lines (MCF-7 and MCF-7/ADR) were tagged with renilla luciferase (Rluc) (MCF-7/RC and MCF-7/ADR/RC). NK cells were tagged with enhanced firefly luciferase (effluc) using a recombinant retrovirus transfection (NKF). Expression of Rluc, effluc, and NK cell surface markers CD16, CD56 as well as death receptors, DR4 and DR5, were assessed by using flow cytometry. In vitro cytotoxic effect of NK to MCF-7 and MCF-7/ADR was measured and in vivo bioluminescence imaging was also performed to visualize MCF-7/RC, MCF-7/ADR, and NKF in an animal model.

Results

NK92-MI, MCF-7, and MCF-7/ADR cells were successfully labeled with Rluc or effluc. Both the target breast cancer cells (with Rluc) and therapeutic NK cells (with effluc) were noninvasively visualized in nude mice. Doxorubicin-resistant breast cancer cells (MCF-7/ADR) presented a higher expression of DR5 and were more sensitive to NK cells compared with doxorubicin-sensitive breast cancer cells (MCF-7).

Conclusion

The results of present study suggest that NK cell therapy has a therapeutic effect on doxorubicin-sensitive and resistant breast cancer cells.  相似文献   

8.

Background

ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626.

Method

MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis.

Results

ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells.

Conclusion

In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.  相似文献   

9.

Background

Macrophage migration inhibitory factor (MIF) is not only a cytokine which has a critical role in several inflammatory conditions but also has endocrine and enzymatic functions. MIF is identified as an intracellular signaling molecule and is implicated in the process of tumor progression, and also strongly enhances neovascularization. Overexpression of MIF has been observed in tumors from various organs. MIF is one of the genes induced by hypoxia in an hypoxia-inducible factor 1 (HIF-1)-dependent manner.

Methods/Principal Findings

The effect of MIF on HIF-1 activity was investigated in human breast cancer MCF-7 and MDA-MB-231 cells, and osteosarcoma Saos-2 cells. We demonstrate that intracellular overexpression or extracellular administration of MIF enhances activation of HIF-1 under hypoxic conditions in MCF-7 cells. Mutagenesis analysis of MIF and knockdown of 53 demonstrates that the activation is not dependent on redox activity of MIF but on wild-type p53. We also indicate that the MIF receptor CD74 is involved in HIF-1 activation by MIF at least when MIF is administrated extracellularly.

Conclusion/Significance

MIF regulates HIF-1 activity in a p53-dependent manner. In addition to MIF''s potent effects on the immune system, MIF is linked to fundamental processes conferring cell proliferation, cell survival, angiogenesis, and tumor invasiveness. This functional interdependence between MIF and HIF-1α protein stabilization and transactivation activity provide a molecular mechanism for promotion of tumorigenesis by MIF.  相似文献   

10.
BackgroundThe modus operandi for an anti-cancer drug must allow for an efficient discrimination system between tumorigenic and non-tumorigenic cells. Targeting ER stress and mitochondrial function in cancer cells appears to be a suitable option, as these processes are dysregulated in tumor cells. AECHL-1, a novel triterpenoid, exhibits potent anticancer activity against an array of cancer cell lines however, its mechanism of action remains elusive.MethodsMolecular targets of AECHL-1 were investigated using breast adenocarcinoma cells MCF-7, MDA-MB-231 and mammary epithelial cell line MCF 10A in vitro and xenograft tumors in SCID mice in vivo. Western blotting, flow cytometry, and immunohistochemical studies were employed to delineate the molecular pathways.ResultsAECHL-1 caused a transient elevation of ER stress proteins along with a prolonged phosphorylation of eIF2α in breast cancer cells. This was accompanied by a simultaneous release of calcium from ER stores and subsequent mitochondrial accumulation. These effects could be reversed by using ER stress inhibitors. AECHL-1 brings about mitochondria mediated, caspase independent cell death via AIF in MCF-7 cells; MDA-MB-231 succumbed to caspase dependent extrinsic pathway. Xenograft studies closely echoed our in vitro results. AECHL-1 did not alter cellular and molecular parameters in MCF 10A.ConclusionThese findings reveal that, AECHL-1 targets the Achilles Heel of cancer cell, namely dysfunctional ER and mitochondria while being non toxic to normal parenchyma and can thus be further explored as a potential chemotherapeutic intervention.General significanceAggravation of ER stress by AECHL-1 uncovers a novel pathway for selective elimination of cancer cells.  相似文献   

11.

Background

The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro.

Methods

The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS.

Conclusion

Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells.  相似文献   

12.

Purpose

To examine whether 99mTc(V)-DMSA could be used as a non-invasive measure of cancer cell proliferation.

Methods

Human breast cancer MCF-7, MDA-MB-231 and pII, and prostate cancer PC-3 cell lines were grown to 30, 50 and 100% confluency and pulsed with 99mTc(V)-DMSA in media for 60 min at 37°C. DNA synthesis was analysed by quantification of the S phase using flow cytometry, [methyl-3H]thymidine incorporation and expression of proliferation markers PCNA and Ki-67 using realtime PCR. One way ANOVA was used to compare groups.

Results

In all cell lines rates of 99mTc(V)-DMSA uptake were inversely related to cell density. This was paralleled by similar trends in S phase proportions, [methyl-3H]thymidine incorporation and expression of PCNA and Ki-67.

Conclusion

Rates of 99mTc(V)-DMSA uptake into different types of tumour cells correlate well with cell density that is useful as a non-invasive measure of tumour cellular proliferation in vivo.  相似文献   

13.

Background

Indole-3-carbinol and its metabolic products are considered promising chemopreventive and anticancer agents. Previously we have shown that the indole-3-carbinol cyclic tetrameric derivative CTet induces autophagy and inhibits cell proliferation via inhibition of Akt activity and overexpression of p21/CDKN1A and GADD45A, in both estrogen receptor-positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines. In the present study, we further characterize the autophagic response and investigate the mechanism through which CTet regulates these events.

Methodology/Principal Findings

Analysis of gene expression microarray data and subsequent confirmation by quantitative real-time PCR, showed that CTet is able to induce up-regulation of key signaling molecules involved in endoplasmic reticulum (ER) stress response (e.g. DDIT3/CHOP, CHAC1, ATF3, HSPA5/BiP/GRP78, CEBPB, ASNS) and autophagy (e.g. MAP1LC3B), in both MCF-7 and MDA-MB-231 cell lines. Moreover, the monitoring of Xbp-1 splicing confirmed the activation of IRE1/Xbp-1 ER stress response branch after CTet treatment. The role of autophagic processes (known to be induced by ER stress) was investigated further through ATG5 gene silencing and pharmacological inhibition of AVOs formation. CTet was shown to induce an autophagy-related cell death. Moreover, CTet-treated cells stained with Hoechst/PI revealed the presence of necrotic processes without evidence of apoptosis.

Conclusions/Significance

The ER stress response was identified as the main upstream molecular mechanism through which CTet acts in both hormone-responsive and triple-negative breast cancer cells. Because of its important role in cancer development, ER stress is a potential target in cancer therapy. The abiltiy of CTet to induce ER stress response and subsequently activate a death program in tumor cells confirms this molecule as a promising anticancer agent.  相似文献   

14.
15.
The aim of the study was to discover possible differential cytotoxicity of triptolide towards estrogen-sensitive MCF-7 versus estrogen-insensitive MDA-MB-231 human breast cancer cells. Considering that MCF-7 cells express functional Estrogen receptor α (ERα) and wild-type p53, whereas MDA-MB-231 cells which are ERα-negative express mutant p53, the anti-proliferation effect of triptolide on MCF-7 and MDA-MB-231 cells were examined, the apoptotic effect and cell cycle arrest caused by triptolide were investigated, ERα and p53 expression were also observed in this paper. The results showed that the anti-proliferation effects were induced by triptolide in both cell lines. But the value of IC50 in MCF-7 cells for its anti-proliferation effect was about one tenth of that in MDA-MB-231 cells, which indicated that the effect is more potent in MCF-7 cells. Condensed chromatin or fragmented nuclei could be found in MCF-7 cells treated with only 40 nM triptolide but in MDA-MB-231 cells they couldn’t be observed until the concentration reached to 400 nM. Triptolide induced significant S cell cycle arrest along with the presence of sub-G0/G1 peak in MDA-MB-231 cells, whereas there was only slightly S cell cycle arrest on cell cycle distribution in MCF-7 cells. The role of p53 in two breast cancer cells was examined, the results showed that the mutant p53 in MDA-MB-231 cells was suppressed and the wild-type p53 in MCF-7 was increased. Moreover, triptolide could down regulate the expression of ERα in MCF-7 cells. The results showed that triptolide is much more sensitive to ERα-positive MCF-7 cells than to ERα-negative MDA-MB-231 cells, and the sensitivity is significantly associated with the ERα and p53 status.  相似文献   

16.

Aims

Cellular senescence is an important tumor suppression process in vivo. Tamoxifen is a well-known anti-breast cancer drug; however, its molecular function is poorly understood. Here, we examined whether tamoxifen promotes senescence in breast cancer and colon cancer cells for the first time.

Main methods

Human breast cancer MCF-7, T47D, and MDA-MB-435 and colorectal cancer HCT116 cells were treated with tamoxifen. Cellular senescence was measured by SA-β-gal staining and based on the protein expression of p53 and p21Cip1/WAF1. The production of reactive oxygen species (ROS) was determined by staining with CM-H2DCFDA and dihydroethidium (DHE). CK2 activity was assessed with a specific peptide substrate.

Key findings

Tamoxifen promoted senescence phenotype and ROS generation in MCF-7 and HCT116 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), and the NADPH oxidase inhibitor, apocynin, almost completely abolished this event. Tamoxifen inhibited the catalytic activity of CK2. Overexpression of CK2α antagonized senescence mediated by tamoxifen, indicating that tamoxifen induced senescence via a CK2-dependent pathway. A well-known CK2 inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), also stimulated ROS production and senescence in MCF-7 cells. Finally, experiments using T47D (wild-type p53) and MDA-MB-435 (mutant p53) cell lines suggested that tamoxifen induces p53-independent ROS production as well as p53-dependent senescence in breast cancer cells.

Significance

These results demonstrate that tamoxifen promotes senescence through a ROS–p53–p21Cip1/WAF1 dependent pathway by inhibiting CK2 activity in breast cancer and colon cancer cells.  相似文献   

17.

Purpose

Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments.

Experimental design

B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed.

Results

Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts.

Conclusion

We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma.  相似文献   

18.

Objective

Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10.

Materials and Methods

Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction.

Results

Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G2/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells.

Conclusion

The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure.  相似文献   

19.

Background

The FokI vitamin D receptor (VDR) polymorphism results in different translation initiation sites on VDR. In the VDRff variant, initiation of translation occurs at the first ATG site, giving rise to a full length VDR protein of 427 amino acids. Conversely, in the VDRFF variant, translation begins at the second ATG site, resulting in a truncated protein with three less amino acids. Epidemiological studies have paradoxically implicated this polymorphism with increased breast cancer risk. 1α,25 (OH)2D3, the active metabolite of vitamin D, is known to inhibit cell proliferation, induce apoptosis and potentiate differentiation in human breast cancer cells. It is well documented that 1α,25 (OH)2D3 downregulates estrogen receptor α expression and inhibits estrogen mediated signaling in these cells. The functional significance of the VDR FokI polymorphism in vitamin D action is undefined.

Methods/Findings

To elucidate the functional role of FokI polymorphism in breast cancer, MCF-7-Vector, MCF-7-VDRff and MCF-7-VDRFF stable cell lines were established from parental MCF-7 cells as single-cell clones. In response to 1α,25 (OH)2D3 treatments, cell growth was inhibited by 60% in VDRFF cells compared to 28% in VDRff cells. The induction of the vitamin D target gene CYP24A1 mRNA was 1.8 fold higher in VDRFF cells than in VDRff cells. Estrogen receptor-α protein expression was downregulated by 62% in VDRFF cells compared to 25% in VDRff cells. VDR protein stability was greater in MCF-7-VDRFF cells in the presence of cycloheximide. PCR array analyses of VDRff and VDRFF cells revealed increased basal expression levels of pro-inflammatory genes Cyclooxygenase-2, Interleukin-8 and Chemokine (C-C Motif) Ligand 2 in MCF-7-VDRff cells by 14, 52.7 and 5 fold, respectively.

Conclusions/Significance

These results suggest that a VDRff genotype may play a role in amplifying aggressive breast cancer, paving the way for understanding why some breast cancer cells respond inefficiently to vitamin D treatment.  相似文献   

20.
WC Lin  YC Chuang  YS Chang  MD Lai  YN Teng  IJ Su  CC Wang  KH Lee  JH Hung 《PloS one》2012,7(7):e39120

Background

Induction of apoptosis by endoplasmic reticulum (ER) stress is implicated as the major factor in the development of multiple diseases. ER stress also appears to be a potentially useful major response to many chemotherapeutic drugs and environmental chemical compounds. A previous study has indicated that one major apoptotic regulator, p53, is significantly increased in response to ER stress, and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood.

Principal Findings

In this report, we demonstrate that induction of p53 expression is mediated through NF-κB signaling pathways during ER stress in MCF-7 cells. Tunicamycin or brefeldin A, two ER stress inducers, increased p53 expression in MCF-7 and Hela cells. We found p53 nuclear localization, activity, and phosphorylation at serine 15 on p53 increased during ER stress. Nuclear translocation of NF-κB and activity of NF-κB were also observed during ER stress. ER stress-induced p53 expression was significantly inhibited by coincubation with the NF-κB inhibitor, Bay 11-7082 and downregulation of NF-κB p65 expression. The role of p53 in mediating Brefeldin A-induced apoptosis was also investigated. Induction of p53 expression by Brefeldin A was correlated to Brefeldin A-induced apoptosis. Furthermore, downregulation of p53 expression by p53 siRNA significantly reduced Brefeldin A-induced apoptosis in MCF-7 cells.

Significance

Taken together, NF-κB activation and induction of p53 expression is essential for ER stress-induced cell death which is important for therapeutic effects of clinical cancer drugs. Our results may provide insight into the mechanism of cancer chemotherapy efficacy that is associated with induction of ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号