首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shamans and Elders: Experience, Knowledge and Power among the Daur Mongols. Caroline Humphrey. with Urgunge Onon. Oxford, England: Oxford University Press, 1996.396 pp.  相似文献   

2.
The hypothesis that pelagic larval duration (PLD) influences range size in marine species with a benthic adult stage and a pelagic larval period is intuitively attractive; yet, studies conducted to date have failed to support it. A possibility for the lack of a relationship between PLD and range size may stem from the failure of past studies to account for the effect of species evolutionary ages, which may add to the dispersal capabilities of species. However, if dispersal over ecological (i.e. PLD) and across evolutionary (i.e. species evolutionary age) time scales continues to show no effect on range size then an outstanding question is why? Here we collected data on PLD, evolutionary ages and range sizes of seven tropical fish families (five families were reef‐associated and two have dwell demersal habitats) to explore the independent and interactive effects of PLD and evolutionary age on range size. Separate analyses on each family showed that even after controlling for evolutionary age, PLD has an insignificant or a very small effect on range size. To shed light on why dispersal has such a limited effect on range size, we developed a global ocean circulation model to quantify the connectivity among tropical reefs relative to the potential dispersal conferred by PLD. We found that although there are several areas of great isolation in the tropical oceans, most reef habitats are within the reach of most species given their PLDs. These results suggest that the lack of habitat isolation can potentially render the constraining effect of dispersal on range size insignificant and explain why dispersal does not relate to range size in reef fishes.  相似文献   

3.
Inclusive fitness theory provides conditions for the evolutionary success of a gene. These conditions ensure that the gene is selfish in the sense of Dawkins (The selfish gene, Oxford University Press, Oxford, 1976): genes do not and cannot sacrifice their own fitness on behalf of the reproductive population. Therefore, while natural selection explains the appearance of design in the living world (Dawkins in The blind watchmaker: why the evidence of evolution reveals a universe without design, W. W. Norton, New York, 1996), inclusive fitness theory does not explain how. Indeed, Hamilton’s rule is equally compatible with the evolutionary success of prosocial altruistic genes and antisocial predatory genes, whereas only the former, which account for the appearance of design, predominate in successful organisms. Inclusive fitness theory, however, permits a formulation of the central problem of sociobiology in a particularly poignant form: how do interactions among loci induce utterly selfish genes to collaborate, or to predispose their carriers to collaborate, in promoting the fitness of their carriers? Inclusive fitness theory, because it abstracts from synergistic interactions among loci, does not answer this question. Fitness-enhancing collaboration among loci in the genome of a reproductive population requires suppressing alleles that decrease, and promoting alleles that increase the fitness of its carriers. Suppression and promotion are effected by regulatory networks of genes, each of which is itself utterly selfish. This implies that genes, and a fortiori individuals in a social species, do not maximize inclusive fitness but rather interact strategically in complex ways. It is the task of sociobiology to model these complex interactions.  相似文献   

4.
Protistology, and evolutionary protistology in particular, is experiencing a golden research era. It is an extended one that can be dated back to the 1970s, which is when the molecular rebirth of microbial phylogeny began in earnest. John Archibald, a professor of evolutionary microbiology at Dalhousie University (Nova Scotia, Canada), focuses on the beautiful story of endosymbiosis in his book, John Archibald, One Plus One Equals One: Symbiosis and the Origin of Complex Life (Oxford: Oxford University Press, 2014). However, this historical narrative could be treated as synecdochal of how the molecular revolution has changed evolutionary biology forever, and that is how Archibald has structured his book. I will address the encompassing theme of molecular methods in detail, but also pay careful attention to the endosymbiosis thread in its own right.  相似文献   

5.
We extend methods of quantitative genetics to studies of the evolution of reaction norms defined over continuous environments. Our models consider both spatial variation (hard and soft selection) and temporal variation (within a generation and between generations). These different forms of environmental variation can produce different evolutionary trajectories even when they favor the same optimal reaction norm. When genetic constraints limit the types of evolutionary changes available to a reaction norm, different forms of environmental variation can also produce different evolutionary equilibria. The methods and models presented here provide a framework in which empiricists may determine whether a reaction norm is optimal and, if it is not, to evaluate hypotheses for why it is not.  相似文献   

6.
The model of major transitions in evolution (MTE) devised by Maynard Smith and Szathmáry has exerted tremendous influence over evolutionary theorists. Although MTE has been criticized for inconsistently combining different types of event, its ongoing appeal lies in depicting hierarchical increases in complexity by means of evolutionary transitions in individuality (ETIs). In this paper, we consider the implications of major evolutionary events overlooked by MTE and its ETI-oriented successors, specifically the biological oxygenation of Earth, and the acquisitions of mitochondria and plastids. By reflecting on these missed events, we reveal a central philosophical disagreement over the explanatory goals of major transitions theory that has yet to be made explicit in the literature. We go on to argue that this philosophical disagreement is only reinforced by Szathmáry’s recent revisions of MTE in the form of MTE 2.0. This finding motivates us to propose an alternative explanatory strategy: specifically, an interactionist metabolic perspective on major transitions. A metabolic framework not only avoids many of the criticisms that beset classic and revised MTE models, but also accommodates missing events and provides crucial explanatory components for standard major transitions. Although we do not provide a full-blown alternative theory and do not claim to achieve unity, we explain why foregrounding metabolism is crucial for any attempt to capture the major turning points in evolution, and why it does not lead to unmanageable pluralism.  相似文献   

7.

Aim

Lack of knowledge concerning the nature of placebo and why it is necessary may influence the participation of patients in clinical trials. The objective of the present study is to review how placebo is described in written information for participants in clinical trials to be evaluated by a Human Research Ethics Committee.

Methods

All research protocols submitted for evaluation in a Spanish hospital during 2007–2013 were reviewed. The main characteristics of the studies using a placebo were collected. Three authors read each of them to determine how the term “placebo” was explained and if there was any comment on its efficacy and safety.

Results

Two thousand seven-hundred and forty research protocols were evaluated, of which three hundred and fifty-nine used a placebo. Pharmaceutical companies sponsored most placebo-controlled clinical trials (91.9%), and phase III studies were the commonest (59.9%). Oncology (15.0%), cardiology (14.2%), and neurology (13.1%) made the greatest contributions. A review of the informed consent forms showed that placebo was described in a similar manner in most studies: the explanation was limited to between four and eight words. Very few gave information about the risks of its use or adverse reactions from its administration. None of the studies provided details about the placebo effect. And 23 lacked any information about placebo at all.

Conclusions

Explanations about placebo in informed consent forms is often scarce, and information about the placebo effect and associated risks are absent. This situation may influence a full understanding of placebo by participants in clinical trials and might reduce their informed decision to participate.  相似文献   

8.
MOTIVATION: Theoretical models of biological networks are valuable tools in evolutionary inference. Theoretical models based on gene duplication and divergence provide biologically plausible evolutionary mechanics. Similarities found between empirical networks and their theoretically generated counterpart are considered evidence of the role modeled mechanics play in biological evolution. However, the method by which these models are parameterized can lead to questions about the validity of the inferences. Selecting parameter values in order to produce a particular topological value obfuscates the possibility that the model may produce a similar topology for a large range of parameter values. Alternately, a model may produce a large range of topologies, allowing (incorrect) parameter values to produce a valid topology from an otherwise flawed model. In order to lend biological credence to the modeled evolutionary mechanics, parameter values should be derived from the empirical data. Furthermore, recent work indicates that the timing and fate of gene duplications are critical to proper derivation of these parameters. RESULTS: We present a methodology for deriving evolutionary rates from empirical data that is used to parameterize duplication and divergence models of protein interaction network evolution. Our method avoids shortcomings of previous methods, which failed to consider the effect of subsequent duplications. From our parameter values, we find that concurrent and existing existing duplication and divergence models are insufficient for modeling protein interaction network evolution. We introduce a model enhancement based on heritable interaction sites on the surface of a protein and find that it more closely reflects the high clustering found in the empirical network.  相似文献   

9.
Regeneration in the metazoans: why does it happen?   总被引:12,自引:0,他引:12  
Why does regeneration occur? And why, when it manifests itself, does it do so in some but not all metazoan species? Hence, what are the permissive or inhibitory factors operating behind this phenomenon? When it comes to regeneration, many questions, such as these, remain unanswered. In fact, the problem of animal regeneration has withstood the probing of scientific inquiry for over 250 years and still awaits a satisfactory mechanistic explanation. In this essay, I will review the distribution and the modes of regeneration that are found in the different metazoan phyla. Also, I will re-examine ideas on its evolutionary origins, and discuss its possible relationship to both asexual reproduction and embryogenesis. This endeavor has two objectives. First, to bring forward an interpretation of regeneration which integrates evolutionary and developmental considerations into its discussion. And second, to suggest a comparative experimental approach to this problem that may bring us closer to understanding the molecular basis of this long-standing biological problem. BioEssays 22:578-590, 2000.  相似文献   

10.
REVIEWS     
《The New phytologist》1946,45(1):162-163
Marine Algae of the Monterey Peninsula, California. By GILBERT M. SMITH, Professor of Biology, Stanford University. Published by the Stanford University Press, Stanford University, California. Oxford University Press. London: Humphrey Milford. Price 36.5. net.
The Pleistocene Period: its Climate, Chronology and Faunal Successions . By F rederick E. Z euner , D. S C, F.Z.S., F.G.S.  相似文献   

11.
Not long after the introduction of evolutionary stable strategy (ESS) concept, it was noticed that dynamic selection did not always lead to the establishment of the ESS. The concept of continuously stable strategy (CSS) was thereafter developed. It was generally accepted that dynamic selection leads to the establishment of an ESS if it is a CSS. Examination of an evolutionary stability concept which is called neighborhood invader strategy (NIS) shows that it may be impossible for an ESS to be established through dynamic selection even if it is a CSS and no polymorphisms occur. We will examine the NIS concept and its implications for two evolutionary game models: root-shoot allocation in plant competition and Lotka–Volterra competition. In the root-shoot model we show that an ESS will be attained through dynamic selection if it is a NIS. Similarly for the Lotka–Volterra model, we show that an ESS will be attained through dynamic selection even if protected dimorphisms occur during the evolutionary process if it is an NIS.  相似文献   

12.
The Gaia hypothesis [Lovelock, J., Margulis, L., 1974. Atmospheric homeostasis: the Gaia hypothesis. Tellus 26, 1], that the earth functions as a self-regulating system, has never sat particularly comfortably with ideas in mainstream biology [Anon, 2002. In pursuit of arrogant simplicities. Nature 416, 247]. A lack of any clear role for evolution in the model has led to claims of teleology-that self-regulation emerges because it is pre-ordained to do so [Doolittle, W.F., 1981. Is nature really motherly? CoEvol. Q. 58-63; Dawkins, R., 1979. The Extended Phenotype. Oxford University Press, Oxford]. The Daisyworld parable [Watson, A.J., Lovelock, J.E., 1983. Biological homeostasis of the global environment--the parable of Daisyworld. Tellus B 35, 284], a simple mathematical illustration of Gaia, went some way to addressing these critiques but, despite recent success in incorporating natural selection [Stocker, S.,1995. Regarding mutations in Daisyworld models. J. Theor. Biol. 175, 495; Lenton, T.M., 1998. Gaia and natural selection. Nature 394, 439; Lenton, T.M., Lovelock, J.E., 2001. Daisyworld revisited: quantifying biological effects on planetary self-regulation. Tellus B 53, 288; Wood, A.J., Ackland, G.J., Lenton, T.M., 2006. Mutation of albedo and growth response leads to oscillations in a spatial Daisyworld. J. Theor. Biol. 242, 188], it remains a widely held view that the ideas are inconsistent with biological principles. We show that standard methodology from quantitative genetics can be used to predict the stationary states and dynamic behaviour of Daisyworlds. The system regulates its temperature due to the low-level evolutionary dynamics of competition between the thermally coupled daisies, no higher level principle is invoked. A reconciliation of Gaia with evolutionary theory may allow further development of evolutionary arguments for the existence of global self-regulatory systems.  相似文献   

13.
When searching for mutations that may be responsible for tumourigenesis and interpreting their significance, molecular oncologists often make a number of implicit assumptions about how and why tumour genotypes develop. These assumptions are based on an underlying classical model of tumourigenesis. The classical model has a number of similarities to models of evolution: given the parallels between the growth of tumours and the evolution of whole organisms, this is to be expected. However, consideration of tumourigenesis as an evolutionary process also suggests some modifications that might be made to the classical model. The experimental methods and data analysis of molecular oncology must take full account of the potential contribution of evolutionary theory. As the study of mutations in cancer expands, molecular oncologists are starting to do this.  相似文献   

14.
15.
When facing the challenge of developing an individual that best fits its environment, nature demonstrates an interesting combination of two fundamentally different adaptive mechanisms: genetic evolution and phenotypic plasticity. Following numerous computational models, it has become the accepted wisdom that lifetime acclimation (e.g. via learning) smooths the fitness landscape and consequently accelerates evolution. However, analytical studies, focusing on the effect of phenotypic plasticity on evolution in simple unimodal landscapes, have often found that learning hinders the evolutionary process rather than accelerating it. Here, we provide a general framework for studying the effect of plasticity on evolution in multipeaked landscapes and introduce a rigorous mathematical analysis of these dynamics. We show that the convergence rate of the evolutionary process in a given arbitrary one-dimensional fitness landscape is dominated by the largest descent (drawdown) in the landscape and provide numerical evidence to support an analogous dominance also in multidimensional landscapes. We consider several schemes of phenotypic plasticity and examine their effect on the landscape drawdown, identifying the conditions under which phenotypic plasticity is advantageous. The lack of such a drawdown in unimodal landscapes vs. its dominance in multipeaked landscapes accounts for the seemingly contradictory findings of previous studies.  相似文献   

16.
Development plays a critical role in structuring the joint offspring-parent phenotype distribution. It thus must be part of any truly general evolutionary theory. Historically, the offspring-parent distribution has often been treated in such a way as to bury the contribution of development, by distilling from it a single term, either heritability or additive genetic variance, and then working only with this term. I discuss two reasons why this approach is no longer satisfactory. First, the regression of expected offspring phenotype on parent phenotype can easily be nonlinear, and this nonlinearity can have a pronounced impact on the response to selection. Second, even when the offspring-parent regression is linear, it is nearly always a function of the environment, and the precise way that heritability covaries with the environment can have a substantial effect on adaptive evolution. Understanding these complexities of the offspring-parent distribution will require understanding of the developmental processes underlying the traits of interest. I briefly discuss how we can incorporate such complexity into formal evolutionary theory, and why it is likely to be important even for traits that are not traditionally the focus of evo-devo research. Finally, I briefly discuss a topic that is widely seen as being squarely in the domain of evo-devo: novelty. I argue that the same conceptual and mathematical framework that allows us to incorporate developmental complexity into simple models of trait evolution also yields insight into the evolution of novel traits.  相似文献   

17.
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free‐living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one‐host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed.  相似文献   

18.
The genotype–phenotype relation is at the core of theoretical biology. It is argued why a mathematically based explanatory structure of this relation is in principle possible, and why it has to embrace both sequence to consequence and consequence to sequence phenomena. It is suggested that the primary role of DNA in the chain of causality is that its presence allows a living system to induce perturbations of its own dynamics as a function of its own system state or phenome, i.e. it capacitates living systems to self-transcend beyond those morphogenetic limits that exist for non-living open physical systems in general. Dynamic models bridging genotypes with phenotypic variation in a causally cohesive way are shown to provide explanations of genetic phenomena that go well beyond the explanatory domains of statistically oriented genetics theory construction. A theory originally proposed by Rupert Riedl, which implies that the morphospace that is reachable by the standing genetic variation in a population is quite restricted due to systemic constraints, is shown to provide a foundation for a mathematical conceptualization of numerous evolutionary phenomena associated with the phenotypic consequence to sequence relation. The paper may be considered a call to arms to mathematicians and the mathematically inclined to rise to the challenge of developing new formalisms capable of dealing with the deep defining characteristics of living systems.  相似文献   

19.
Recombination's omnipresence in nature is one of the most intriguing problems in evolutionary biology. The question of why recombination exhibits certain general features is no less interesting than that of why it exists at all. One such feature is recombination's fitness dependence (FD). The so far developed population genetics models have focused on the evolution of FD recombination mainly in haploids, although the empirical evidence for this phenomenon comes mostly from diploids. Using numerical analysis of modifier models for infinite panmictic populations, we show here that FD recombination can be evolutionarily advantageous in diploids subjected to purifying selection. We ascribe this advantage to the differential rate of disruption of lower‐ versus higher‐fitness genotypes, which can be manifested in selected systems with at least three loci. We also show that if the modifier is linked to such selected system, it can additionally benefit from modifying this linkage in a fitness‐dependent manner. The revealed evolutionary advantage of FD recombination appeared robust to crossover interference within the selected system, either positive or negative. Remarkably, FD recombination was often favored in situations where any constant nonzero recombination was evolutionarily disfavored, implying a relaxation of the rather strict constraints on major parameters (e.g., selection intensity and epistasis) required for the evolutionary advantage of nonzero recombination formulated by classical models.  相似文献   

20.
Goldstein RA 《Proteins》2011,79(5):1396-1407
When we seek to explain the characteristics of living systems in their evolutionary context, we are often interested in understanding how and why certain properties arose through evolution, and how these properties then affected the continuing evolutionary process. This endeavor has been assisted by the use of simple computational models that have properties characteristic of natural living systems but allow simulations over evolutionary timescales with full transparency. We examine a model of the evolution of a gene under selective pressure to code for a protein that exists in a prespecified folded state at a given growth temperature. We observe the emergence of proteins with modest stabilities far below those possible with the model, with a denaturation temperature tracking the simulation temperature, despite the absence of selective pressure for such marginal stability. This demonstrates that neither observations of marginally stable proteins, nor even instances where increased stability interferes with function, provide evidence that marginal stability is an adaptation. Instead the marginal stability is the result of a balance between predominantly destabilizing mutations and selection that shifts depending on effective population size. Even if marginal stability is not an adaptation, the natural tendency of proteins toward marginal stability, and the range of stabilities that occur during evolution, may have significant effect on the evolutionary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号