首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antifreeze proteins (AFPs) are produced by many species of teleost fish that inhabit potentially lethal ice-laden seawater and afford them protection from freezing. To date type I AFPs have been fully characterized in two teleost orders: Pleuronectiformes and Scorpaeniformes. In this study, we report the isolation and complete characterization of a type I AFP present in fish from a third order: cunner (Tautogolabrus adspersus), order Perciformes (family Labridae). This protein was purified from blood plasma and found to belong to what is now known as classical type I AFP with their small size (mass 4095.16 Da), alanine richness (> 57 mol%), high α-helicity (> 99%) with the ability to undergo reversible thermal denaturation, 11 amino acid (ThrX(10)) repeat regions within the primary structure, the capacity to impart a hexagonal bipyramidal shaping to ice crystals and the conservation of an ice-binding site found in many of the other type I AFPs. Partial de novo sequencing of the plasma AFP accounted for approximately half of the peptide mass. Sequencing of a combined liver and skin cDNA library indicated that the protein is produced without a signal sequence. In addition the translated product of the AFP cDNA suggests that it codes for the AFP isolated from plasma. These results further solidify the hypothesis that type I AFPs are multiphyletic in origin and suggest that they represent remarkable examples of convergent evolution within three orders of teleost fish.  相似文献   

3.
Antifreeze proteins (AFPs) inhibit the growth of ice by binding to the surface of ice crystals, preventing the addition of water molecules to cause a local depression of the freezing point. AFPs from insects are much more effective at depressing the freezing point than fish AFPs. Here, we have investigated the possibility that insect AFPs bind more avidly to ice than fish AFPs. Because it is not possible to directly measure the affinity of an AFP for ice, we have assessed binding indirectly by examining the partitioning of proteins into a slowly growing ice hemisphere. AFP molecules adsorbed to the surface and became incorporated into the ice as they were overgrown. Solutes, including non-AFPs, were very efficiently excluded from ice, whereas AFPs became incorporated into ice at a concentration roughly equal to that of the original solution, and this was independent of the AFP concentration in the range (submillimolar) tested. Despite their >10-fold difference in antifreeze activity, fish and insect AFPs partitioned into ice to a similar degree, suggesting that insect AFPs do not bind to ice with appreciably higher affinity. Additionally, we have demonstrated that steric mutations on the ice binding surface that decrease the antifreeze activity of an AFP also reduce its inclusion into ice, supporting the validity of using partitioning measurements to assess a protein's affinity for ice.  相似文献   

4.
Antifreeze proteins/polypeptides (AFPs), which are found in diverse species of marine fish, are grouped into four distinct classes (types I-IV). The discovery of skin-specific type I AFPs established that this class contains distinct isoforms, liver-type and skin-type, which are encoded by separate gene families. In this study, type I AFPs were isolated and partially characterized from skin tissues of Atlantic snailfish (Liparis atlanticus) and cunner (Tautogolabrus adspersus). Interestingly, evidence from this study indicates that snailfish type I AFPs synthesized in skin tissues are identical to those circulating in their blood plasma. Furthermore, type II AFPs that are identical to those expressed in liver for export into blood were purified from sea raven (Hemitripterus americanus) skin tissue extracts. It is clear that epithelial tissues are an important source for antifreeze expression to enhance the complement of AFPs that protect fish from freezing in extreme cold environments. In addition, the evidence generated in this study demonstrates that expression of AFPs in fish skin is a widespread phenomenon that is not limited to type I proteins.  相似文献   

5.
The cryopreservation of fish embryos is a challenge because of their structure, with multiple compartments and permeability barriers, and their high chilling sensitivity. Vitrification at advanced developmental stages is considered to be the more promising option. Nevertheless, all reported attempts have failed. Previous studies demonstrated a better ability for freezing in species that naturally express antifreeze proteins (AFPs). These proteins have been delivered into other fish embryos using time-consuming techniques like microinjection. In the present study, the introduction of FITC labelled AFPs was assayed in zebrafish embryos at early developmental stages (from 2-cell to high blastula stage), before the formation of the yolk syncytial layer, by an easy and non-invasive method and evaluated by fluorescence and confocal microscopy. Incubation with AFPs at 128-cell or high blastula stage provides incorporation of the protein in 50–90% of embryos without affecting hatching. Incubation in media containing protein is a simple, harmless and effective method which makes it possible to treat several embryos at the same time. AFPs remain located in derivatives from marginal blastomeres: the yolk syncytial layer, the most cryosensitive and impermeable barrier, and different digestive organs. Our findings demonstrate that delivery of AFP type I and AFP type III into zebrafish embryos by incubation in media containing protein is a simple and harmless method that may improve cryoprotection of the cellular compartment.  相似文献   

6.
Fish embryo cryopreservation, which is useful in aquaculture or biodiversity conservation, is still far from being achieved. Structural barriers reduce the entrance of cryoprotectants into embryo compartments. Previous studies demonstrated a better ability for freezing in Arctic species which naturally express antifreeze proteins (AFPs). In this study, AFPs were delivered in early zebrafish embryos by incubation in media containing protein. Their cryoprotective effects were then analyzed. Chilling sensitivity was evaluated at 4 °C and −10 °C. Survival rates significantly increased in embryos incorporating AFPI and kept at −10 °C. To analyze their effects on cryopreservation, 5-somite embryos were vitrified. Incorporation of AFPI reduced the percentage of embryos that collapsed at thawing (14.2% of AFPI-treated embryos and 48.9% of controls). Cellular damage caused by vitrification was assessed after thawing by cell dissociation and further analysis of cell survival in culture (SYBR-14/IP labeling). The percentage of viable cells at thawing ranged from 25 to 50%, considered incompatible with embryo development. Cells recovered from frozen-control embryos did not survive in culture. However, the incorporation of AFPs allowed survival similar to that of cells recovered from non-frozen embryos. Blastomere cryopreservation trials incorporating AFPI in the extender also demonstrated a significant increase in viability after freezing. Our findings demonstrated that delivery of AFPs into zebrafish embryos by incubation in media containing protein at early stages is a simple and harmless method that increases cryoprotection of the cellular compartment. This beneficial effect is also noticed in blastomeres, encouraging their use in further protocols for embryo cryopreservation.  相似文献   

7.
Expression of antifreeze proteins in transgenic plants   总被引:33,自引:0,他引:33  
The quality of frozen fruits and vegetables can be compromised by the damaging effects of ice crystal growth within the frozen tissue. Antifreeze proteins in the blood of some polar fishes have been shown to inhibit ice recrystallization at low concentrations. In order to determine whether expression of genes of this type confers improved freezing properties to plant tissue, we have produced transgenic tobacco and tomato plants which express genes encoding antifreeze proteins. Theafa3 antifreeze gene was expressed at high steady-state mRNA levels in leaves from transformed plants, but we did not detect inhibition of ice recrystallization in tissue extracts. However, both mRNA and fusion proteins were detectable in transgenic tomato tissue containing a chimeric gene encoding a fusion protein between truncated staphylococcal protein A and antifreeze protein. Furthermore, ice recrystallization inhibition was detected in this transgenic tissue.  相似文献   

8.
黄粉虫Tenebrio molitorL.抗冻蛋白基因家族有多个成员,其氨基酸数量和蛋白结构存在差异.尽管有报道发现冷驯化后这些抗冻蛋白的表达量会升高,但不同家族成员是否存在功能分化尚不清楚.本研究中,检测了冷驯化对低温死亡率的效应和对不同类型的抗冻蛋白家族成员基因表达量的影响.结果表明,冷驯化可以显著降低黄粉虫幼虫的低温死亡率和提高不同类型抗冻蛋白基因的表达量.其中,长的抗冻蛋白和低温死亡率的相关关系最为明显.说明不同的抗冻蛋白家族成员的功能有明显的分化,为进一步理解抗冻蛋白的活性和利用抗冻蛋白提供了新的认识.  相似文献   

9.
黄粉虫Tenebrio molitor L.抗冻蛋白基因家族有多个成员,其氨基酸数量和蛋白结构存在差异。尽管有报道发现冷驯化后这些抗冻蛋白的表达量会升高,但不同家族成员是否存在功能分化尚不清楚。本研究中,检测了冷驯化对低温死亡率的效应和对不同类型的抗冻蛋白家族成员基因表达量的影响。结果表明,冷驯化可以显著降低黄粉虫幼虫的低温死亡率和提高不同类型抗冻蛋白基因的表达量。其中,长的抗冻蛋白和低温死亡率的相关关系最为明显。说明不同的抗冻蛋白家族成员的功能有明显的分化,为进一步理解抗冻蛋白的活性和利用抗冻蛋白提供了新的认识。  相似文献   

10.
Certain freeze-intolerant insects produce antifreeze proteins (AFPs) during overwintering including the spruce budworm (Choristoneura fumiferana) and yellow mealworm (Tenebrio molitor) AFP gene families. However, only a few of the isoforms, encoded by their multiple-copy gene families, have been characterized. When expressed in bacterial systems the insect AFPs have to be denatured and refolded in vitro, a procedure that is not uniformly successful, presumably due to the beta-helix structure and the requirement for disulfide bonds. In an attempt to overcome these difficulties, bacterial vectors and hosts that have been developed to produce soluble, folded proteins, as well as a yeast expression system (Pichia pastoris) were employed. Bacterial expression resulted in low quantities of active recombinant protein for certain isoforms. In contrast, both small and large-scale fermentation of recombinant AFP in Pichia yielded substantial protein production (100 mg/L) but functional ice binding activity of protein produced in three different transformed yeast strains (KM71, X33 or GS115) was low. Inappropriate O-linked glycosylation of the Thr-rich AFPs appeared to be partially reversed by mild chemical deglycosylation, but activity remained low. Substantial quantities, as well as activity were recovered when a fish AFP, with disulfide bonds, but without potential Thr glycosylation sites was expressed in the yeast system.  相似文献   

11.
Xu H  Perumal S  Zhao X  Du N  Liu XY  Jia Z  Lu JR 《Biophysical journal》2008,94(11):4405-4413
Interfacial adsorption from two antifreeze proteins (AFP) from ocean pout (Macrozoarces americanus, type III AFP, AFP III, or maAFP) and spruce budworm (Choristoneura fumiferana, isoform 501, or cfAFP) were studied by neutron reflection. Hydrophilic silicon oxide was used as model substrate to facilitate the solid/liquid interfacial measurement so that the structural features from AFP adsorption can be examined. All adsorbed layers from AFP III could be modeled into uniform layer distribution assuming that the protein molecules were adsorbed with their ice-binding surface in direct contact with the SiO2 substrate. The layer thickness of 32 Å was consistent with the height of the molecule in its crystalline form. With the concentration decreasing from 2 mg/ml to 0.01 mg/ml, the volume fraction of the protein packed in the monolayer decreased steadily from 0.4 to 0.1, consistent with the concentration-dependent inhibition of ice growth observed over the range. In comparison, insect cfAFP showed stronger adsorption over the same concentration range. Below 0.1 mg/ml, uniform layers were formed. But above 1 mg/ml, the adsorbed layers were characterized by a dense middle layer and two outer diffuse layers, with a total thickness around 100 Å. The structural transition indicated the responsive changes of conformational orientation to increasing surface packing density. As the higher interfacial adsorption of cfAFP was strongly correlated with the greater thermal hysteresis of spruce budworm, our results indicated the important relation between protein adsorption and antifreeze activity.  相似文献   

12.
13.
14.
15.
植物抗冻蛋白研究进展(综述)   总被引:1,自引:0,他引:1  
植物抗冻蛋白(AFPs)的研究起步较晚.本文综述植物AFPs的发现过程、理化性质、在植物抗冻生理中的作用及其机制、结构模型及相关的植物基因工程.  相似文献   

16.
The sequence and activity of antifreeze proteins from two right eye flounder species were compared to assess the influence of structural variations on antifreeze capacity. The cDNA encoding the major serum antifreeze protein in the yellowtail flounder (Limanda ferruginea) was cloned from liver tissue. Its DNA sequence shows that the precursor to the antifreeze is a 97-residue preproportion. Edman degradation identified the N-terminus of the 48-amino-acid mature serum antifreeze protein and confirmed the sequence of the first 36 residues. A comparison with the previously determined winter flounder antifreeze protein and mRNA sequences shows strong homology through the 5' and 3' untranslated regions and in the peptide region. The mature protein section has the greatest sequence variation. Specifically, the yellowtail antifreeze protein, in contrast to that of the winter flounder, contains a fourth 11-amino-acid repeat and lacks several of the hydrophilic residues that have been postulated to aid in the binding of the protein to ice crystals. Intramolecular salt bridges are present in the antifreeze proteins from both species but in different registries with respect to the 11-amino-acid repeats. On a mass basis the yellowtail flounder antifreeze, though longer than that of the winter flounder, is only 80% as effective at depressing the freezing temperature of aqueous solutions. This lower activity might be due to the reduced number of hydrophilic ice-binding residues per molecule.  相似文献   

17.
Using synthetic DNA, we assembled a gene encoding a protein identical in sequence to one of the antifreeze proteins produced by the fish Pseudopleuronectes americanus (winter flounder). To address the relationship between structure and function, we also assembled genes encoding proteins varying in sequence and length. The synthetic genes were cloned into a bacterial expression vector to generate translational fusions to the 3' end of a truncated staphylococcal protein A gene; the chimeric proteins encoded by these fusions, varying only in their antifreeze domains, were isolated from Escherichia coli. The antifreeze domains conferred the ability to inhibit ice recrystallization, which is characteristic of naturally occurring antifreeze proteins, on the chimeric proteins. The chimeric proteins varied in their effectiveness of inhibiting ice recrystallization according to the number of 11-amino acid repeats present in the antifreeze moiety. A protein with only two repeats lacked activity, while the inhibitory activity increased progressively for proteins containing three, four, and five repeats. Some activity was lost upon removal of either the salt bridge or the carboxyl-terminal arginine, but surprisingly, not when both features were absent together.  相似文献   

18.
Entry of HeLa and CHO-10 cells into mitosis can be inhibited by incorporation of p-fluorophenylalanine at certain temperatures, 37 °C for the former cell type and 39.5 °C for the latter. At lower temperatures, 32 °C in the former and 37 °C in the latter, the analogue does not inhibit entry of cells into mitosis. The possibility that the analogue is not incorporated at the permissive temperatures has been ruled out; indeed incorporation is relatively greater at the permissive temperatures. The results suggest that the physiological properties of analogue protein molecules differ depending on the temperature at which they are synthesized; the higher the temperature the more likely they are to malfunction.  相似文献   

19.
《Cryobiology》2012,64(3):220-228
Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53 °C ± 0.53 °C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34 °C ± 0.25 °C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号