首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Tegument is a unique structure of herpesvirus, which surrounds the capsid and interacts with the envelope. Morphogenesis of gammaherpesvirus is poorly understood due to lack of efficient lytic replication for Epstein-Barr virus and Kaposi''s sarcoma-associated herpesvirus/human herpesvirus 8, which are etiologically associated with several types of human malignancies. Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses and presents an excellent model for studying de novo lytic replication of gammaherpesviruses. MHV-68 open reading frame 33 (ORF33) is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. However, the specific role of ORF33 in gammaherpesvirus replication has not yet been characterized. We describe here that ORF33 is a true late gene and encodes a tegument protein. By constructing an ORF33-null MHV-68 mutant, we demonstrated that ORF33 is not required for viral DNA replication, early and late gene expression, viral DNA packaging or capsid assembly but is required for virion morphogenesis and egress. Although the ORF33-null virus was deficient in release of infectious virions, partially tegumented capsids produced by the ORF33-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, ORF52 tegument protein, but virtually no ORF45 tegument protein and the 65-kDa glycoprotein B. Finally, we found that the defect of ORF33-null MHV-68 could be rescued by providing ORF33 in trans or in an ORF33-null revertant virus. Taken together, our results indicate that ORF33 is a tegument protein required for viral lytic replication and functions in virion morphogenesis and egress.Gammaherpesviruses are associated with tumorigenesis. Like other herpesviruses, they are characterized as having two distinct stages in their life cycle: lytic replication and latency (15, 16, 18, 21, 54). Latency provides the viruses with advantages to escape host immune surveillance and to establish lifelong persistent infection and contributes to transformation and development of malignancies. However, it is through lytic replication that viruses propagate and transmit among hosts to maintain viral reservoirs. Both viral latency and lytic replication play important roles in tumorigenesis. The gammaherpesvirus subfamily includes Epstein-Barr virus (EBV), Kaposi''s sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 and murine gammaherpesvirus 68 (MHV-68), among others. EBV is associated with Burkitt''s lymphoma, nasopharyngeal carcinoma, Hodgkin''s disease, and lymphoproliferative diseases in immunodeficient patients (28). KSHV is etiologically linked with Kaposi''s sarcoma, primary effusion lymphoma, and multicentric Castleman''s disease (11-13, 22, 52). Neither in vivo nor in vitro studies of EBV and KSHV are convenient due to their propensity to establish latency in cell culture and their limited host ranges.MHV-68 is genetically related to these two human gammaherpesviruses, especially to KSHV, based on the alignment of their genomic sequences and other biological properties (55). As a natural pathogen of wild rodents, MHV-68 also infects laboratory mice (6, 40, 46) and replicates to a high titer in a variety of fibroblast and epithelial cell lines. These advantages make MHV-68 an excellent model for studying the lytic replication of gammaherpesviruses in vitro and certain aspects of virus-host interactions in vivo. In addition, the MHV-68 genome has been cloned as a bacterial artificial chromosome (BAC) that can propagate in Escherichia coli (1, 2, 36, 51), making it convenient to study the function of each open reading frame (ORF) by genetic methods. Exploring the functions of MHV-68 ORFs will likely shed light on the functions of their homologues in human gammaherpesviruses.Gammaherpesviral particles have a characteristic multilayered architecture. An infectious virion contains a double-stranded DNA genome, an icosahedral capsid shell, a thick, proteinaceous tegument compartment, and a lipid bilayer envelope spiked with glycoproteins (14, 30, 47, 49). As a unique structure of herpesviruses, the tegument plays important roles in multiple aspects of the viral life cycle, including virion assembly and egress (38, 48, 53), translocation of nucleocapsids into the nucleus, transactivation of viral immediate-early genes, and modulation of host cell gene expression, innate immunity, and signal transduction (9, 10, 23, 60). Some components of MHV-68 tegument have been identified by a mass spectrometric study (8), and the functions of some tegument proteins have been revealed, such as ORF45, ORF52, and ORF75c (7, 24, 29).MHV-68 ORF33 is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. Its homologues include human herpes simplex virus type 1 (HSV-1) UL16, human herpes simplex virus type 2 (HSV-2) UL16, human cytomegalovirus (HCMV) UL94, EBV BGLF2, KSHV ORF33, and rhesus monkey rhadinovirus (RRV) ORF33. HSV-1 UL16 has been identified as a tegument protein and may function in viral DNA packaging, virion assembly, budding, and egress (5, 32, 35, 41, 44). HCMV UL94 is a virion associated protein and might function in virion assembly and budding (31, 57). EBV BGLF2, KSHV ORF33, and RRV ORF33 are also virion-associated proteins, but their functions are not clear (26, 43, 59). The mass spectrometric study of MHV-68 did not identify ORF33 as a virion component (8), although ORF33 is found to be essential for viral lytic replication by transposon mutagenesis of the MHV-68 genome cloned as a BAC (51). However, insertion of the 1.2-kbp Mu transposon in that study may influence the expression of ORFs approximate to ORF33. Consequently, the role ORF33 plays in viral replication needs to be confirmed, preferably through site-directed mutagenesis. Whether ORF33 is a tegument protein and the exact viral replication stage in which it functions also need to be investigated.We determined that MHV-68 ORF33 encodes a tegument protein and is expressed with true late kinetics. To explore the function of ORF33 in viral lytic phase, we used site-directed mutagenesis and generated an ORF33-null mutant, taking advantage of the MHV-68 BAC system. We showed that the ORF33-null mutant is capable of viral DNA replication, early and late gene expression, capsid assembly, and DNA packaging, but incapable of virion release. The defect of ORF33-null mutant can be rescued in trans by an ORF33 expression plasmid.  相似文献   

5.
6.
7.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

8.
We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil.Isolating and characterizing DNA sequences for use in molecular methods are integral to evaluating microbial community diversity in soil (6, 21, 22, 24, 37). Any isolation protocol should maximize nucleic acid isolation while minimizing copurification of enzymatic inhibitors. Although several methods that focus on extraction of total community DNA from environmental soil and water samples have been published (7, 21, 26, 34), the lack of a standard nucleic acid isolation protocol (32) reflects the difficulty in accomplishing these goals, most likely due to the complex nature of the soil environment.DNA extraction is especially difficult for soils containing clay (3, 5), given the tight binding of DNA strands to clay soil particles (7, 10, 20). Additionally, extracellular DNA binds to and is copurified with soil humic substances (10), which inhibit the activity of enzymes such as restriction endonucleases and DNA polymerase (6, 13, 23). Although clay-bound DNA can be PCR amplified in the absence of inhibitors (1), it is often the case that inhibitors are present in the soil environment, among them bilirubin, bile salts, urobilinogens, and polysaccharides (40). Of these inhibitors, humic substances have been found to be the most recalcitrant (36).A promising technique for isolating specific target sequences from soil particles and enzymatic inhibitors is the magnetic capture hybridization-PCR technique (MCH-PCR) presented by Jacobsen (19) and used to obtain high detection sensitivities (11, 38).We have found no evidence in the published literature of the use of MCH-PCR on soils that have high clay contents and here present a three-step strategy for isolating specific DNA sequences from the most difficult soil environment—clay that contains humic substances—and enumerating a specific target sequence from the crude extract.  相似文献   

9.
The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.Poxviruses are large DNA viruses that infect a wide range of hosts. The smallpox virus devastated human populations until its eradication 3 decades ago. Other poxviruses are emerging, such as monkeypox virus, which also infects humans and causes disease (61). The smallpox vaccine is a model of vaccine efficacy, but how the vaccine induces protection is not well understood. Knowledge of how the vaccine produces protection will also likely be important for efforts to produce vaccines that are effective against other pathogens. Though highly successful in the population overall, the smallpox vaccine uses an infectious strain of vaccinia virus and has a significant level of serious side effects (6). One focus of current research is to develop vaccines using recombinant poxvirus proteins that are as protective as the live virus vaccine but produce fewer complications. A more detailed structural characterization of the protein antigens that are important for conferring protection will improve our knowledge of how the smallpox vaccine works and lead to a better understanding of poxvirus biology.There are two morphologically distinct forms of poxviruses: the mature virion (MV) and the enveloped virion (EV) (53). The MV, also known as the intracellular mature virion (IMV), is found inside the infected cell (62, 65). Enveloped virions are formed from MVs that have been wrapped by modified Golgi or endosomal membranes (53). MVs are thought to be responsible for host-to-host proliferation of the virus, while the EVs mediate virus spread within a host (40, 49). EVs that are attached to the cell surface, also termed cell-associated enveloped virions (CEV), are thought to propagate viral infection to neighboring cells (65). EVs that are released from the cell surface, also termed extracellular enveloped virus (EEV), mediate longer-range dissemination in the host (65). The outer membranes of the MV and EV forms each have a distinct assemblage of proteins. Candidate subunit vaccines have been shown to require proteins from both virus forms to be most effective (17, 27, 28).A33 is a type II integral membrane glycoprotein found on the surface of the EV form of the virus and is also expressed on the host cell membrane (62). A33 is a disulfide-bonded homodimer with both N- and O-linked glycosylation (57, 62). Deletion of the A33R gene in vaccinia virus results in a small-plaque phenotype, defects in actin tail formation, and inefficient cell-to-cell spread in cell culture (63). Evidence implicates A33 in the spreading of virus from cell to cell by a mechanism that is antibody resistant (40). Antibodies against A33 in cell culture prevent the formation of comet-shaped viral plaques, which are assayed in an overlay of plaques with liquid and are indicative of cell-to-cell spreading of the EV (2, 17). A33 has been shown to interact through its cytoplasmic and transmembrane regions with the EV proteins A36 (18, 64, 72, 76) and B5 (58, 64). Vaccination with A33 is protective in a number of animal models of poxvirus infection as a component of protein subunit vaccination (16, 17, 19, 77), DNA vaccination (19, 27-29), or a combination of the two methods (24). Despite the inclusion of A33 in vaccination studies, the functions of A33 in the virus are unclear.Members of the C-type lectin-like domain (CTLD) superfamily of proteins are found in organisms ranging from bacteria to humans (13, 78). The first crystal structures of carbohydrate-binding domains with this fold gave rise to the name “lectin” for the family, but many family members do not bind carbohydrates. The classification of a domain as being C type lectin-like is currently based on similarities in protein sequence and fold (74). CTLDs have been shown to bind noncarbohydrate small molecules, lipids, proteins, and other structures, such as ice (13, 78). One group of type II transmembrane proteins that contain CTLDs is comprised of the natural killer (NK)-cell receptors of the innate immune system (78). The NK-cell receptors are composed of dimers of CTLDs, which are the only dimers out of the several hundred C-type lectin-like structures that are known. Protein binding by NK-cell receptors occurs on a surface formed by the “long loop” and nearby residues that are on the opposite side of the dimer from the N and C termini (60). A second group of proteins contains a monomeric CTLD, termed a “Link module” CTLD, that binds glycosaminoglycans but lacks the “long loop” region that is present in almost all other CTLDs (78).To gain a better understanding of the structure and possible functions of A33 and to further its development in vaccines, we determined the X-ray crystal structure of the A33 ectodomain from vaccinia virus. Based on the structure and sequence of A33, the carbohydrate-binding site of the canonical CTLD is not present. The structure revealed A33 to have dimers of CTLDs. Comparison of A33 with other CTLDs, including dimers from NK-cell receptors and monomers from Link modules, indicates that A33 contains an unusual CTLD that likely binds ligands of host or virus origins.  相似文献   

10.
The parvovirus adeno-associated virus (AAV) contains a small single-stranded DNA genome with inverted terminal repeats that form hairpin structures. In order to propagate, AAV relies on the cellular replication machinery together with functions supplied by coinfecting helper viruses such as adenovirus (Ad). Here, we examined the host cell response to AAV replication in the context of Ad or Ad helper proteins. We show that AAV and Ad coinfection activates a DNA damage response (DDR) that is distinct from that seen during Ad or AAV infection alone. The DDR was also triggered when AAV replicated in the presence of minimal Ad helper proteins. We detected autophosphorylation of the kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and signaling to downstream targets SMC1, Chk1, Chk2, H2AX, and XRCC4 and multiple sites on RPA32. The Mre11 complex was not required for activation of the DDR to AAV infection. Additionally, we found that DNA-PKcs was the primary mediator of damage signaling in response to AAV replication. Immunofluorescence revealed that some activated damage proteins were found in a pan-nuclear pattern (phosphorylated ATM, SMC1, and H2AX), while others such as DNA-PK components (DNA-PKcs, Ku70, and Ku86) and RPA32 accumulated at AAV replication centers. Although expression of the large viral Rep proteins contributed to some damage signaling, we observed that the full response required replication of the AAV genome. Our results demonstrate that AAV replication in the presence of Ad helper functions elicits a unique damage response controlled by DNA-PK.Replication of viral genomes produces a large amount of extrachromosomal DNA that may be recognized by the cellular DNA damage machinery. This is often accompanied by activation of DNA damage response (DDR) signaling pathways and recruitment of cellular repair proteins to sites of viral replication. Viruses therefore provide good model systems to study the recognition and response to DNA damage (reviewed in reference 48). The Mre11/Rad50/Nbs1 (MRN) complex functions as a sensor of chromosomal DNA double-strand breaks (DSBs) and is involved in activation of damage signaling (reviewed in reference 41). The MRN complex also localizes to DNA DSBs and is found at viral replication compartments during infection with a number of DNA viruses (6, 40, 47, 70, 75, 77, 87, 93). The phosphatidylinositol 3-kinase-like kinases (PIKKs) ataxia telangiectasia mutated (ATM), ATM and Rad3-related kinase (ATR), and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) are involved in the signal transduction cascades activated by DNA damage (reviewed in references 43, 51, and 71). These kinases respond to distinct types of damage and regulate DSB repair during different phases of the cell cycle (5), either through nonhomologous end-joining (NHEJ) or homologous recombination pathways (reviewed in references 63, 81, and 86). The DNA-PK holoenzyme is composed of DNA-PKcs and two regulatory subunits, the Ku70 and Ku86 heterodimer. DNA-PK functions with XRCC4/DNA ligase IV to repair breaks during NHEJ, and works with Artemis to process DNA hairpin structures during VDJ recombination and during a subset of DNA DSB events (46, 50, 86). While the kinase activity of DNA-PKcs leads to phosphorylation of a large number of substrates in vitro as well as autophosphorylation of specific residues (reviewed in references 16 and 85), it is currently unclear how DNA-PKcs contributes to signaling in cells upon different types of damage.The adeno-associated virus (AAV) genome consists of a molecule of single-stranded DNA with inverted terminal repeats (ITRs) at both ends that form double-hairpin structures due to their palindromic sequences (reviewed in reference 52). The ITRs are important for replication and packaging of the viral genome and for integration into the host genome. Four viral Rep proteins (Rep78, Rep68, Rep52, and Rep40) are also required for replication and packaging of the AAV genome into virions assembled from the Cap proteins. Although the Rep and Cap genes are replaced in recombinant AAV vectors (rAAV) that retain only the ITRs flanking the gene of interest, these vectors can be replicated by providing Rep in trans (reviewed in reference 7). Productive AAV infection requires helper functions supplied by adenovirus (Ad) or other viruses such as herpes simplex virus (HSV) (reviewed in reference 27), together with components of the host cell DNA replication machinery (54, 55, 58). In the presence of helper viruses or minimal helper proteins from Ad or HSV, AAV replicates in the nucleus at centers where the viral DNA and Rep proteins accumulate (35, 76, 84, 89). Cellular and viral proteins involved in AAV replication, including replication protein A (RPA), Ad DNA-binding protein (DBP), and HSV ICP8, localize with Rep proteins at these viral centers (29, 33, 76).A number of published reports suggest associations between AAV and the cellular DNA damage machinery. For example, transduction by rAAV vectors is increased by genotoxic agents and DNA damaging treatments (1, 62, 91) although the mechanisms involved remain unclear. Additionally, the ATM kinase negatively regulates rAAV transduction (64, 92), and we have shown that the MRN complex poses a barrier to both rAAV transduction and wild-type AAV replication (11, 67). UV-inactivated AAV particles also appear to activate a DDR involving ATM and ATR kinases that perturbs cell cycle progression (39, 60, 88). It has been suggested that this response is provoked by the AAV ITRs (60) and that UV-treated particles mimic stalled replication forks in infected cells (39). In addition to AAV genome components, the viral Rep proteins have been observed to exhibit cytotoxicity and induce S-phase arrest (3, 65).The role of cellular repair proteins in AAV genome processing has also been explored by examining the molecular fate of rAAV vectors, which are converted into circular and concatemeric forms that persist episomally (18, 19, 66). Proteins shown to regulate circularization in cell culture include ATM and the MRN complex (14, 64), while in vivo experiments using mouse models have implicated ATM and DNA-PK in this process (14, 20, 72). Additionally, DNA-PKcs and Artemis have recently been shown to cleave the ITR hairpins of rAAV vectors in vivo in a tissue-dependent manner (36). Despite these studies, it is not clear how damage response factors function together and how they impact AAV transduction and replication in human cells.In this study we examined the cellular response to AAV replication in the context of Ad infection or helper proteins. We show that coinfection with AAV and Ad activates a DDR that is distinct from that seen during infection with Ad alone. The ATM and DNA-PKcs damage kinases are activated and signal to downstream substrates, but the response does not require the MRN complex and is primarily mediated by DNA-PKcs. Although expression of the large Rep proteins induced some DDR events, full signaling appeared to require AAV replication and was accompanied by accumulation of DNA-PK at viral replication compartments. Our results demonstrate that AAV replication induces a unique DNA damage signal transduction response and provides a model system for studying DNA-PK.  相似文献   

11.
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.Lentiviruses display an exquisite ability to infect dividing and nondividing cells alike that is unequalled among Retroviridae. This property is thought to be due to the particular behavior or composition of the viral nucleoprotein complexes (NPCs) that are liberated into the cytoplasm of target cells upon virus-to-cell membrane fusion and that allow lentiviruses to traverse an intact nuclear membrane (17, 28, 29, 39, 52, 55, 67, 79). In the case of the human immunodeficiency type I virus (HIV-1), several studies over the years identified viral components of such structures with intrinsic karyophilic properties and thus perfect candidates for mediation of the passage of viral DNA (vDNA) through the nuclear pore: the matrix protein (MA); Vpr; the integrase (IN); and a three-stranded DNA flap, a structure present in neo-synthesized viral DNA, specified by the central polypurine tract-central termination sequence (cPPT-CTS). It is clear that these elements may mediate nuclear import directly or via the recruitment of the host''s proteins, and indeed, several cellular proteins have been found to influence HIV-1 infection during nuclear import, like the karyopherin α2 Rch1 (38); importin 7 (3, 30, 93); the transportin SR-2 (13, 20); or the nucleoporins Nup98 (27), Nup358/RANBP2, and Nup153 (13, 56).More recently, the capsid protein (CA), the main structural component of viral nucleoprotein complexes at least upon their cytoplasmic entry, has also been suggested to be involved in nuclear import or in postnuclear entry steps (14, 25, 74, 90, 92). Whether this is due to a role for CA in the shaping of viral nucleoprotein complexes or to a direct interaction between CA and proteins involved in nuclear import remains at present unknown.Despite a large number of reports, no single viral or cellular element has been described as absolutely necessary or sufficient to mediate lentiviral nuclear import, and important controversies as to the experimental evidences linking these elements to this step exist. For example, MA was among the first viral protein of HIV-1 described to be involved in nuclear import, and 2 transferable nuclear localization signals (NLSs) have been described to occur at its N and C termini (40). However, despite the fact that early studies indicated that the mutation of these NLSs perturbed HIV-1 nuclear import and infection specifically in nondividing cells, such as macrophages (86), these findings failed to be confirmed in more-recent studies (23, 33, 34, 57, 65, 75).Similarly, Vpr has been implicated by several studies of the nuclear import of HIV-1 DNA (1, 10, 21, 43, 45, 47, 64, 69, 72, 73, 85). Vpr does not possess classical NLSs, yet it displays a transferable nucleophilic activity when fused to heterologous proteins (49-51, 53, 77, 81) and has been shown to line onto the nuclear envelope (32, 36, 47, 51, 58), where it can truly facilitate the passage of the viral genome into the nucleus. However, the role of Vpr in this step remains controversial, as in some instances Vpr is not even required for viral replication in nondividing cells (1, 59).Conflicting results concerning the role of IN during HIV-1 nuclear import also exist. Indeed, several transferable NLSs have been described to occur in the catalytic core and the C-terminal DNA binding domains of IN, but for some of these, initial reports of nuclear entry defects (2, 9, 22, 46, 71) were later shown to result from defects at steps other than nuclear import (60, 62, 70, 83). These reports do not exclude a role for the remaining NLSs in IN during nuclear import, and they do not exclude the possibility that IN may mediate this step by associating with components of the cellular nuclear import machinery, such as importin alpha and beta (41), importin 7 (3, 30, 93, 98), and, more recently, transportin-SR2 (20).The central DNA flap, a structure present in lentiviruses and in at least 1 yeast retroelement (44), but not in other orthoretroviruses, has also been involved in the nuclear import of viral DNA (4, 6, 7, 31, 78, 84, 95, 96), and more recently, it has been proposed to provide a signal for viral nucleoprotein complexes uncoating in the proximity of the nuclear pore, with the consequence of providing a signal for import (8). However, various studies showed an absence or weakness of nuclear entry defects in viruses devoid of the DNA flap (24, 26, 44, 61).Overall, the importance of viral factors in HIV-1 nuclear import is still unclear. The discrepancies concerning the role of MA, IN, Vpr, and cPPT-CTS in HIV-1 nuclear import could in part be explained by their possible redundancy. To date, only one comprehensive study analyzed the role of these four viral potentially karyophilic elements together (91). This study showed that an HIV-1 chimera where these elements were either deleted or replaced by their murine leukemia virus (MLV) counterparts was, in spite of an important infectivity defect, still able to infect cycling and cell cycle-arrested cell lines to similar efficiencies. If this result indicated that the examined viral elements of HIV-1 were dispensable for the cell cycle independence of HIV, as infections proceeded equally in cycling and arrested cells, they did not prove that they were not required in nuclear import, because chimeras displayed a severe infectivity defect that precluded their comparison with the wild type (WT).Nuclear import and cell cycle independence may not be as simply linked as previously thought. On the one hand, there has been no formal demonstration that the passage through the nuclear pore, and thus nuclear import, is restricted to nondividing cells, and for what we know, this passage may be an obligatory step in HIV infection in all cells, irrespective of their cycling status. In support of this possibility, certain mutations in viral elements of HIV affect nuclear import in dividing as well as in nondividing cells (4, 6, 7, 31, 84, 95). On the other hand, cell cycle-independent infection may be a complex phenomenon that is made possible not only by the ability of viral DNA to traverse the nuclear membrane but also by its ability to cope with pre- and postnuclear entry events, as suggested by the phenotypes of certain CA mutants (74, 92).Given that the cellular environment plays an important role during the early steps of viral infection, we chose to analyze the role of the four karyophilic viral elements of HIV-1 during infection either alone or combined in a wide comparison between cells highly susceptible to infection and more-restrictive primary cell targets of HIV-1 in vivo, such as primary blood lymphocytes (PBLs), monocyte-derived macrophages (MDM), and dendritic cells (DCs).In this study, we show that an HIV-1-derived virus in which the 2 NLSs of MA are mutated and the IN, Vpr, and cPPT-CTS elements are removed displays no detectable nuclear import defect in HeLa cells independently of their cycling status. However, this mutant virus is partially impaired for nuclear entry in primary cells and more specifically in DCs and PBLs. We found that this partial defect is specified by the cPPT-CTS, while the 3 remaining elements seem to play no role in nuclear import. Thus, our study indicates that the central DNA flap specifies the most important role among the viral elements involved thus far in nuclear import. However, it also clearly indicates that the role played by the central DNA flap is not absolute and that its importance varies depending on the cell type, independently from the dividing status of the cell.  相似文献   

12.
13.
14.
Only a few archaeal viruses have been subjected to detailed structural analyses. Major obstacles have been the extreme conditions such as high salinity or temperature needed for the propagation of these viruses. In addition, unusual morphotypes of many archaeal viruses have made it difficult to obtain further information on virion architectures. We used controlled virion dissociation to reveal the structural organization of Halorubrum pleomorphic virus 1 (HRPV-1) infecting an extremely halophilic archaeal host. The single-stranded DNA genome is enclosed in a pleomorphic membrane vesicle without detected nucleoproteins. VP4, the larger major structural protein of HRPV-1, forms glycosylated spikes on the virion surface and VP3, the smaller major structural protein, resides on the inner surface of the membrane vesicle. Together, these proteins organize the structure of the membrane vesicle. Quantitative lipid comparison of HRPV-1 and its host Halorubrum sp. revealed that HRPV-1 acquires lipids nonselectively from the host cell membrane, which is typical of pleomorphic enveloped viruses.In recent years there has been growing interest in viruses infecting hosts in the domain Archaea (43). Archaeal viruses were discovered 35 years ago (52), and today about 50 such viruses are known (43). They represent highly diverse virion morphotypes in contrast to the vast majority (96%) of head-tail virions among the over 5,000 described bacterial viruses (1). Although archaea are widespread in both moderate and extreme environments (13), viruses have been isolated only for halophiles and anaerobic methanogenes of the kingdom Euryarchaeota and hyperthermophiles of the kingdom Crenarchaeota (43).In addition to soil and marine environments, high viral abundance has also been detected in hypersaline habitats such as salterns (i.e., a multipond system where seawater is evaporated for the production of salt) (19, 37, 50). Archaea are dominant organisms at extreme salinities (36), and about 20 haloarchaeal viruses have been isolated to date (43). The majority of these are head-tail viruses, whereas electron microscopic (EM) studies of highly saline environments indicate that the two other described morphotypes, spindle-shaped and round particles, are the most abundant ones (19, 37, 43). Thus far, the morphological diversity of the isolated haloarchaeal viruses is restricted compared to viruses infecting hyperthermophilic archaea, which are classified into seven viral families (43).All of the previously described archaeal viruses have a double-stranded DNA (dsDNA) genome (44). However, a newly characterized haloarchaeal virus, Halorubrum pleomorphic virus 1 (HRPV-1), has a single-stranded DNA (ssDNA) genome (39). HRPV-1 and its host Halorubrum sp. were isolated from an Italian (Trapani, Sicily) solar saltern. Most of the studied haloarchaeal viruses lyse their host cells, but persistent infections are also typical (40, 44). HRPV-1 is a nonlytic virus that persists in the host cells. In liquid propagation, nonsynchronous infection cycles of HRPV-1 lead to continuous virus production until the growth of the host ceases, resulting in high virus titers in the growth medium (39).The pleomorphic virion of HRPV-1 represents a novel archaeal virus morphotype constituted of lipids and two major structural proteins VP3 (11 kDa) and VP4 (65 kDa). The genome of HRPV-1 is a circular ssDNA molecule (7,048 nucleotides [nt]) containing nine putative open reading frames (ORFs). Three of them are confirmed to encode structural proteins VP3, VP4, and VP8, which is a putative ATPase (39). The ORFs of the HRPV-1 genome show significant similarity, at the amino acid level, to the minimal replicon of plasmid pHK2 of Haloferax sp. (20, 39). Furthermore, an ∼4-kb region, encoding VP4- and VP8-like proteins, is found in the genomes of two haloarchaea, Haloarcula marismortui and Natronomonas pharaonis, and in the linear dsDNA genome (16 kb) of spindle-shaped haloarchaeal virus His2 (39). The possible relationship between ssDNA virus HRPV-1 and dsDNA virus His2 challenges the classification of viruses, which is based on the genome type among other criteria (15, 39).HRPV-1 is proposed to represent a new lineage of pleomorphic enveloped viruses (39). A putative representative of this lineage among bacterial viruses might be L172 of Acholeplasma laidlawii (14). The enveloped virion of L172 is pleomorphic, and the virus has a circular ssDNA genome (14 kb). In addition, the structural protein pattern of L172 with two major structural proteins, of 15 and 53 kDa, resembles that of HRPV-1.The structural approach has made it possible to reveal relationships between viruses where no sequence similarity can be detected. It has been realized that several icosahedral viruses infecting hosts in different domains of life share common virion architectures and folds of their major capsid proteins. These findings have consequences for the concept of the origin of viruses. A viral lineage hypothesis predicts that viruses within the same lineage may have a common ancestor that existed before the separation of the cellular domains of life (3, 5, 8, 26). Currently, limited information is available on the detailed structures of viruses infecting archaea. For example, the virion structures of nontailed icosahedral Sulfolobus turreted icosahedral virus (STIV) and SH1 have been determined (21, 23, 46). However, most archaeal viruses represent unusual, sometimes nonregular, morphotypes (43), which makes it difficult to apply structural methods that are based on averaging techniques.A biochemical approach, i.e., controlled virion dissociation, gives information on the localization and interaction of virion components. In the present study, controlled dissociation was used to address the virion architecture of HRPV-1. A comparative lipid analysis of HRPV-1 and its host was also carried out. Our results show that the unique virion type is composed of a flexible membrane decorated with the glycosylated spikes of VP4 and internal membrane protein VP3. The circular ssDNA genome resides inside the viral membrane vesicle without detected association to any nucleoproteins.  相似文献   

15.
16.
17.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

18.
Like other RNA viruses, coxsackievirus B5 (CVB5) exists as circulating heterogeneous populations of genetic variants. In this study, we present the reconstruction and characterization of a probable ancestral virion of CVB5. Phylogenetic analyses based on capsid protein-encoding regions (the VP1 gene of 41 clinical isolates and the entire P1 region of eight clinical isolates) of CVB5 revealed two major cocirculating lineages. Ancestral capsid sequences were inferred from sequences of these contemporary CVB5 isolates by using maximum likelihood methods. By using Bayesian phylodynamic analysis, the inferred VP1 ancestral sequence dated back to 1854 (1807 to 1898). In order to study the properties of the putative ancestral capsid, the entire ancestral P1 sequence was synthesized de novo and inserted into the replicative backbone of an infectious CVB5 cDNA clone. Characterization of the recombinant virus in cell culture showed that fully functional infectious virus particles were assembled and that these viruses displayed properties similar to those of modern isolates in terms of receptor preferences, plaque phenotypes, growth characteristics, and cell tropism. This is the first report describing the resurrection and characterization of a picornavirus with a putative ancestral capsid. Our approach, including a phylogenetics-based reconstruction of viral predecessors, could serve as a starting point for experimental studies of viral evolution and might also provide an alternative strategy for the development of vaccines.The group B coxsackieviruses (CVBs) (serotypes 1 to 6) were discovered in the 1950s in a search for new poliovirus-like viruses (33, 61). Infections caused by CVBs are often asymptomatic but may occasionally result in severe diseases of the heart, pancreas, and central nervous system (99). CVBs are small icosahedral RNA viruses belonging to the Human enterovirus B (HEV-B) species within the family Picornaviridae (89). In the positive single-stranded RNA genome, the capsid proteins VP1 to VP4 are encoded within the P1 region, whereas the nonstructural proteins required for virus replication are encoded within the P2 and P3 regions (4). The 30-nm capsid has an icosahedral symmetry and consists of 60 copies of each of the four structural proteins. The VP1, VP2, and VP3 proteins are surface exposed, whereas the VP4 protein lines the interior of the virus capsid (82). The coxsackievirus and adenovirus receptor (CAR), a cell adhesion molecule of the immunoglobulin superfamily, serves as the major cell surface attachment molecule for all six serotypes of CVB (5, 6, 39, 60, 98). Some strains of CVB1, CVB3 and CVB5 also interact with the decay-accelerating factor (DAF) (CD55), a member of the family of proteins that regulate the complement cascade. However, the attachment of CVBs to DAF alone does not permit the infection of cells (6, 7, 59, 85).Picornaviruses exist as genetically highly diverse populations within their hosts, referred to as quasispecies (20, 57). This genetic plasticity enables these viruses to adapt rapidly to new environments, but at the same time, it may compromise the structural integrity and enzymatic functionality of the virus. The selective constraints imposed on the picornavirus genome are reflected in the different regions used for different types of evolutionary studies. The highly conserved RNA-dependent RNA polymerase (3Dpol) gene is used to establish phylogenetic relationships between more-distantly related viruses (e.g., viruses belonging to different genera) (38), whereas the variable genomic sequence encoding the VP1 protein is used for the classification of serotypes (13, 14, 69, 71, 72).In 1963, Pauling and Zuckerkandl proposed that comparative analyses of contemporary protein sequences can be used to predict the sequences of their ancient predecessors (73). Experimental reconstruction of ancestral character states has been applied to evolutionary studies of several different proteins, e.g., galectins (49), G protein-coupled receptors (52), alcohol dehydrogenases (95), rhodopsins (15), ribonucleases (46, 88, 110), elongation factors (32), steroid receptors (10, 96, 97), and transposons (1, 45, 87). In the field of virology, reconstructed ancestral or consensus protein sequences have been used in attempts to develop vaccine candidates for human immunodeficiency virus type 1 (21, 51, 66, 81) but rarely to examine general phenotypic properties.In this study, a CVB5 virus with a probable ancestral virion (CVB5-P1anc) was constructed and characterized. We first analyzed in detail the evolutionary relationships between structural genes of modern CVB5 isolates and inferred a time scale for their evolutionary history. An ancestral virion sequence was subsequently inferred by using a maximum likelihood (ML) method. This sequence was then synthesized de novo, cloned into a replicative backbone of an infectious CVB5 cDNA clone, and transfected into HeLa cells. The hypothetical CVB5-P1anc assembled into functional virus particles that displayed phenotypic properties similar to those of contemporary clinical isolates. This is the first report describing the reconstruction and characterization of a fully functional picornavirus with a putative ancestral capsid.  相似文献   

19.
A major obstacle to gene transduction by viral vectors is inactivation by human complement in vivo. One way to overcome this is to incorporate complement regulatory proteins, such as CD55/decay accelerating factor (DAF), into viral particles. Lentivirus vectors pseudotyped with the baculovirus envelope protein GP64 have been shown to acquire more potent resistance to serum inactivation and longer transgene expression than those pseudotyped with the vesicular stomatitis virus (VSV) envelope protein G. However, the molecular mechanisms underlying resistance to serum inactivation in pseudotype particles bearing the GP64 have not been precisely elucidated. In this study, we generated pseudotype and recombinant VSVs bearing the GP64. Recombinant VSVs generated in human cell lines exhibited the incorporation of human DAF in viral particles and were resistant to serum inactivation, whereas those generated in insect cells exhibited no incorporation of human DAF and were sensitive to complement inactivation. The GP64 and human DAF were detected on the detergent-resistant membrane and were coprecipitated by immunoprecipitation analysis. A pseudotype VSV bearing GP64 produced in human DAF knockdown cells reduced resistance to serum inactivation. In contrast, recombinant baculoviruses generated in insect cells expressing human DAF or carrying the human DAF gene exhibited resistance to complement inactivation. These results suggest that the incorporation of human DAF into viral particles by interacting with baculovirus GP64 is involved in the acquisition of resistance to serum inactivation.Gene therapy is a potential treatment option for genetic diseases, malignant diseases, and other acquired diseases. To this end, safe and efficient gene transfer into specific target cells is a central requirement, and a variety of nonviral and viral vector systems have been developed (6, 44). Recombinant viruses can be used for efficient gene transfer. Retroviruses, adeno-associated viruses, and lentiviruses are able to integrate foreign genes into host genomes and are suitable for gene therapeutics by virtue of their permanent expression of the therapeutic genes, whereas adenoviruses, herpesviruses, and baculoviruses can transiently express foreign genes (6, 12, 44). Pseudotype particles bearing other viral envelope proteins have been developed to improve transduction efficiency and the safety of viral vectors, including retrovirus (4, 7), lentivirus (25), vesicular stomatitis virus (VSV) (29), and baculovirus (17, 42). Pseudotype retroviruses and lentiviruses bearing the baculovirus envelope protein GP64 of Autographa californica nucleopolyhedrosis virus (AcNPV) have been shown to exhibit efficient gene transduction into a wide variety of cells with a lower cytotoxicity compared to those bearing the VSV envelope protein G (VSVG), which is commonly used for pseudotyping (18, 32, 35, 36).However, a drawback of gene transduction by viral vectors is that human sera inactivate the vectors (11, 40). Complement is a major element of the innate immune response and serves to link innate and adaptive immunity (8). Complement activation can occur via classical, lectin, and alternative pathways (2, 8). All pathways invoke several responses, such as virus opsonization, virolysis, anaphylatoxin, and chemotaxin production, as well as others (2, 8). VSV and baculovirus are inactivated by human sera via the classical pathway (1, 11). Because complement activation also induces potential damage to host cells, the complement system is tightly regulated by the complement regulatory proteins (CRPs), including CD55/decay-accelerating factor (DAF), CD46/membrane cofactor protein (MCP), and CD59 (2, 8, 15). DAF and CD46 inhibit activation of C3/C5-converting enzymes, which regulate the activation of classical and alternative pathways, whereas CD59 regulates the assembly of the membrane attack complex (2, 8, 15).Viral vectors can be manipulated to confer resistance to the complement inactivation. Human immunodeficiency virus (HIV) is known to develop resistance to human complement through the incorporation of DAF, CD46, and CD59 to the viral particles (22, 30, 31, 38). Moloney murine leukemia virus vectors produced in HT1080 cells are resistant to complement inactivation (5). Baculovirus and lentivirus vectors bearing DAF or the fusion protein between the functional domains of human DAF and the GP64 were resistant to complement inactivation (9, 13). It has been shown that lentivirus vectors pseudotyped with the GP64 are more resistant to inactivation in the sera of mice and rats (14, 32) and are capable of executing longer expression of the transgenes in nasal epithelia compared to those pseudotyped with the VSVG (35, 36). However, the precise mechanisms underlying the resistance to complement inactivation by pseudotyping of the GP64 is not known.To clarify the molecular mechanisms underlying the resistance of the viral vectors pseudotyped with the GP64 to the complement inactivation, we produced pseudotype and recombinant VSVs bearing the GP64. The recombinant VSVs carrying the gp64 gene generated in human cells but not in insect cells exhibited incorporation of human DAF on the viral particles and were resistant to the complement inactivation. Furthermore, production of the gp64 pseudotype VSV in the DAF knockdown human cells impaired serum resistance, whereas production of the gp64 recombinant VSV in the CHO cell lines stably expressing human DAF and the recombinant baculoviruses in the insect cells stably expressing human DAF or encoding the DAF gene in the genome conferred resistance to the complement inactivation. These results suggest that DAF incorporation into viral particles bearing baculovirus GP64 confers resistance to serum inactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号