首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2−/− mice are protected against inflammation in different disease models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases. This study tested the impact of MK2-deficiency on high-fat diet (HFD)-induced adipose tissue inflammation and insulin resistance. After feeding MK2−/− and WT control mice a HFD (60% energy from fat) for 24 weeks, body weight was not different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK2−/− mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK2−/− mice. This differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfα and Il6. Glucose and insulin tolerance tests demonstrated that MK2−/− mice had a significantly reduced glucose tolerance and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4) in adipose tissue of MK2−/− mice was reduced by 55% (p<0.05) and 33% (p<0.05) on the mRNA and protein level, respectively, compared to WT mice. In conclusion, HFD-fed MK2−/− display decreased glucose tolerance and increased insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution, taking potential metabolic adverse effects into account.  相似文献   

2.
流感病毒引起人类和动物的呼吸道感染已是全世界严重的经济和公共卫生问题。在感染早期,流感病毒会导致机体的先天免疫信号被激活,起到防御、清除病毒以及辅助适应性免疫应答的作用。但在与宿主共进化的过程中,流感病毒形成了多种逃逸策略,主要是通过病毒自身蛋白质阻断宿主天然免疫通路,抑制干扰素和炎性因子的生成。基于现有的研究成果,本文针对流感病毒先天免疫应答和先天免疫逃逸的机制做一扼要综述,这有助于加强流感病毒抗原进化的监测、探索疫苗和抗病毒药物的合理靶标,为更好地预防和控制该病提供有效的策略。  相似文献   

3.
Neurotropic recombinant strain of Mouse Hepatitis Virus, RSA59, induces meningo-encephalitis, myelitis and demyelination following intracranial inoculation. RSA59 induced neuropathology is partially caused by activation of CNS resident microglia, as demonstrated by changes in cellular morphology and increased expression of a microglia/macrophage specific calcium ion binding factor, Iba1. Affymetrix Microarray analysis for mRNA expression data reveals expression of inflammatory mediators that are known to be released by activated microglia. Microglia-specific cell surface molecules, including CD11b, CD74, CD52 and CD68, are significantly upregulated in contrast to CD4, CD8 and CD19. Protein analysis of spinal cord extracts taken from mice 6 days post-inoculation, the time of peak inflammation, reveals robust expression of IFN-γ, IL-12 and mKC. Data suggest that activated microglia and inflammatory mediators contribute to a local CNS microenvironment that regulates viral replication and IFN-γ production during the acute phase of infection, which in turn can cause phagolysosome maturation and phagocytosis of the myelin sheath, leading to demyelination.  相似文献   

4.
Leaf senescence is a developmentally programmed cell death process that constitutes the final step of leaf development, and it can be regulated by multiple environmental cues and endogenous signals. The mitogen-activated protein kinase (MAPK) cascades play diverse roles in intracellular and extracellular signaling in plants. Roles of the MAPK signaling module in leaf senescence are unknown. Here, a MAPK cascade involving MKK9-MPK6 is shown to play an important role in regulating leaf senescence in Arabidopsis (Arabidopsis thaliana). Both MKK9 and MPK6 possess kinase activities, with MPK6 an immediate target of MKK9, as revealed by in vitro, in vivo, and in planta assays. The constitutive and inducible overexpression of MKK9 causes premature senescence in leaves and in whole Arabidopsis plants. The premature senescence phenotype is suppressed when MKK9 is overexpressed in the mpk6 null background. When either MKK9 or MPK6 is knocked out, leaf senescence is delayed.  相似文献   

5.
Diverse bacterial species produce pore-forming toxins (PFT) that can puncture eukaryotic cell membranes. Host cells respond to sublytic concentrations of PFT through conserved intracellular signaling pathways, including activation of mitogen-activated protein kinases (MAPK), which are critical to cell survival. Here we demonstrate that in respiratory epithelial cells p38 and JNK MAPK were phosphorylated within 30 min of exposure to pneumolysin, the PFT from Streptococcus pneumoniae. This activation was tightly regulated, and dephosphorylation of both MAPK occurred within 60 min following exposure. Pretreatment of epithelial cells with inhibitors of cellular phosphatases, including sodium orthovanadate, calyculin A, and okadaic acid, prolonged and intensified MAPK activation. Specific inhibition of MAPK phosphatase-1 did not affect the kinetics of MAPK activation in PFT-exposed epithelial cells, but siRNA-mediated knockdown of serine/threonine phosphatases PP1 and PP2A were potent inhibitors of MAPK dephosphorylation. These results indicate an important role for PP1 and PP2A in termination of epithelial responses to PFT and only a minor contribution of dual-specificity phosphatases, such as MAPK phosphatase-1, which are the major regulators of MAPK signals in other cell types. Epithelial regulation of MAPK signaling in response to membrane disruption involves distinct pathways and may require different strategies for therapeutic interventions.  相似文献   

6.
7.
Wild dabbling ducks (genus Anas) are the main reservoir for influenza A virus (IAV) in the Northern Hemisphere. Current understanding of disease dynamics and epidemiology in this virus-host system has primarily been based on population-level surveillance studies and infection experiments conducted in laboratory settings. Using a combined experimental-natural approach with wild-strain captive mallards (Anas platyrhynchos), we monitored individual IAV infection histories and immunological responses of 10 birds over the course of 15 months. This is the first detailed study to track natural IAV infection histories over several seasons amongst the same individuals growing from juvenile to adults. The general trends in the infection histories of the monitored birds reflected seasonal variation in prevalence at the population level. However, within the study group there were significant differences between individuals in infection frequency as well as in short and long term anti-IAV antibody response. Further observations included individual variation in the number of infecting virus subtypes, and a strong tendency for long-lasting hemagglutinin-related homosubtypic immunity. Specifically, all infections in the second autumn, except one, were of different subtypes compared to the first autumn. The variation among birds concerning these epidemiologically important traits illustrates the necessity for IAV studies to move from the level of populations to examine individuals in order to further our understanding of IAV disease and epidemiology.  相似文献   

8.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in thrombus formation. We used p38α heterozygous (p38α+/?) mice and used ferric chloride (FeCl3)-induced carotid artery injury as a model of thrombus formation. The time to thrombotic occlusion induced by FeCl3 in p38α+/? mice was prolonged compared to that in wild-type (WT) mice. Platelets prepared from p38α+/? mice showed impairment of the aggregatory response to a low concentration of U46619, a thromboxane A2 analogue. Furthermore, platelets prepared from p38α+/? mice and activated by U46619 were poorly bound to fibrinogen compared with those from WT mice. Both the expression and activity of tissue factor induced by FeCl3 in WT mice were higher than those in p38α+/? mice. These results suggest that p38 plays an important role in thrombus formation by regulating platelet function and tissue factor activity.  相似文献   

9.

Background

Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei.

Methodology and Principal Findings

Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFα, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-κB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides.

Conclusions

Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection.  相似文献   

10.
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2DD, in tobacco induces the expression of defense genes and hypersensitive response–like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid–induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response–like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

11.
12.
Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs) are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to a vaccine in vitro is in line with the immune response the vaccine evokes in vivo. To this end, we investigated the response of murine bone marrow-derived DCs to whole inactivated virus (WIV) and subunit (SU) influenza vaccine preparations. These vaccine preparations were chosen because they differ in the immune response they evoke in mice with WIV being superior to SU vaccine through induction of higher virus-neutralizing antibody titers and a more favorable Th1-skewed response phenotype. Stimulation of DCs with WIV, but not SU vaccine, resulted in a cytokine response that was comparable to that of DCs stimulated with live virus. Similarly, the gene expression profiles of DCs treated with WIV or live virus were similar and differed from that of SU vaccine-treated DCs. More specifically, exposure of DCs to WIV resulted in differential expression of genes in known antiviral pathways, whereas SU vaccine did not. The stronger antiviral and more Th1-related response of DCs to WIV as compared to SU vaccine correlates well with the superior immune response found in mice. These results indicate that in vitro stimulation of DCs with novel vaccine candidates combined with the assessment of multiple parameters, including gene signatures, may be a valuable tool for the selection of vaccine candidates.  相似文献   

13.
Leukotriene B4 (LTB4), a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs) expression in response to agonist challenge. In this report, we provide evidences that LTB4 acts on nucleotide-binging oligomerization domain 2 (NOD2) pathway to enhance immune response against influenza A infection. Infected mice receiving LTB4 show improved survival, lung architecture and reduced lung viral loads as compared to placebo-treated animals. NOD2 and its downstream adaptor protein IPS–1 have been found to be essential for LTB4-mediated effects against IAV infection, as absence of NOD2 or IPS–1 diminished its capacity to control viral infection. Treatment of IAV-infected mice with LTB4 induces an increased activation of IPS-1-IRF3 axis leading to an enhanced production of IFNβ in lungs of infected mice. LTB4 also has the ability to act on the RICK-NF-κB axis since administration of LTB4 to mice challenged with MDP markedly increases the secretion of IL–6 and TNFα in lungs of mice. TAK1 appears to be essential to the action of LTB4 on NOD2 pathway since pretreatment of MEFs with TAK1 inhibitor prior stimulation with IAV or MDP strongly abrogated the potentiating effects of LTB4 on both IFNβ and cytokine secretion. Together, our results demonstrate that LTB4, through its ability to activate TAK1, potentiates both IPS–1 and RICK axis of the NOD2 pathway to improve host innate responses.  相似文献   

14.
Genital herpes, caused by herpes simplex virus type 2 (HSV-2), is one of the most prevalent sexually transmitted diseases worldwide and a risk factor for acquiring human immunodeficiency virus. Although many vaccine candidates have shown promising results in animal models, they have failed to be effective in human trials. In this study, a humanized mouse strain was evaluated as a potential preclinical model for studying human immune responses to HSV-2 infection and vaccination. Immunodeficient mouse strains were examined for their abilities to develop human innate and adaptive immune cells after transplantation of human umbilical cord stem cells. A RAG2−/− γc−/− mouse strain with a BALB/c background was chosen as the most appropriate model and was then examined for its ability to mount innate and adaptive immune responses to intravaginal HSV-2 infection and immunization. After primary infection, human cells in the lymph nodes were able to generate a protective innate immune response and produce gamma interferon (IFN-γ). After intravaginal immunization and infection, human T cells and NK cells were found in the genital tract and iliac lymph nodes. In addition, human T cells in the spleen, lymph nodes, and vaginal tract were able to respond to stimulation with HSV-2 antigens by replicating and producing IFN-γ. Human B cells were also able to produce HSV-2-specific immunoglobulin G. These adaptive responses were also shown to be protective and reduce local viral replication in the genital tract. This approach provides a means for studying human immune responses in vivo using a small-animal model and may become an important preclinical tool.Genital herpes, caused primarily by herpes simplex virus type 2 (HSV-2), is one of the most prevalent sexually transmitted diseases in the world and is associated with substantial morbidity (13). After initial infection of the genital tract, the virus establishes latency within the nervous system and thus maintains lifelong infection in humans. Latent virus can reactivate and cause recurrent symptoms, including genital lesions; however, subclinical infection and asymptomatic viral shedding also occur (11, 35, 40, 53). HSV-2 has gained increasing interest in the light of evidence that it is a major risk factor for human immunodeficiency virus type 1 (HIV-1) acquisition and transmission and for the progression of HIV-1 infection (8, 9, 17, 25, 37, 55, 56). In addition, there is evidence that anti-HSV therapy can reduce the amount of infectious HIV-1 in the genital tracts of women (9, 45). Although antiviral treatment is available and can reduce the severity of the infection, compliance problems, as well as difficulty in diagnosing infection in patients, have hampered efforts to control the disease. A vaccine would provide a more effective way of preventing or limiting infection and would therefore greatly reduce the social and economic burdens caused by HSV-2 infection.Several vaccine candidates exist; however, they have proven to be less successful in clinical trials than anticipated, and new strategies may need to be developed (24, 61). A key concern is that preclinical vaccine strategies have been evaluated largely by using studies performed with mouse models of HSV-2 infection and, thus, the immune responses observed were mediated by murine cells. As a consequence, the results of these studies may not accurately represent the human immune response to infection. In order to develop an effective vaccine and/or treatment, it is necessary to understand which immune mechanisms provide protection against infection at the site of viral entry, the vaginal tract, and how these immune responses can be induced in humans.Innate and adaptive immune responses are both important for controlling HSV-2 infection. Innate immune cells such as NK and NKT cells are required for protection against genital HSV-2 infection in mice (1) and in humans; NK cells accumulate at sites of HSV-2 infection and can lyse HSV-infected cells (30, 67). Adaptive immune responses to HSV-2 include the cellular response mediated by CD4+ and CD8+ T cells and the humoral response mediated by B cells and antibodies. There is much evidence that T cells play a crucial role in protection against HSV-2 in mice and humans (28). T cells are present in herpes lesions, and depletion of T cells in mice greatly reduces protection (16, 27, 29, 30, 44, 51, 70). Gamma interferon (IFN-γ), which is produced early after infection by NK cells and later by CD4+ T cells, has been shown to be a crucial cytokine for the control of HSV (43, 52, 58, 63). Although HSV-2-specific antibodies are produced in response to infection and vaccination, a correlation with protection in humans has not been established (2, 3, 7, 10, 11, 48). In mice, a role for antibodies early after infection has been shown; however, if B cells are knocked out, mice are still able to eventually clear the virus (16, 50). Although we do not have a complete understanding of the components that are necessary for protection, it appears that both innate and adaptive immune responses will be required and that it will be important to elicit these responses at the site of infection in the genital tract.The lack of an effective vaccine and accurate translation of results obtained with mice to humans indicates a need for a more relevant preclinical model to study human immune responses and disease. Substantial improvements in the development of humanized mice have made them a novel tool for the study of human diseases (69). Human CD34+ stem cells have been injected into several immunodeficient mouse strains, such as NOD/SCID/γc−/− and RAG2−/− γc−/− mice, in which superior engraftment has resulted in multilineage differentiation of the human cells (23, 64). These novel humanized mice have been shown to develop human immune responses to pathogens such as Epstein-Barr virus, dengue virus, and influenza virus and to immunization with cholera toxin (33, 64, 66, 68). In addition, humanized mice can support infection with HIV after systemic or mucosal challenge in the vaginal tract and rectum (4-6, 62, 65). HSV-2 infection in humanized mice has not been examined, and mucosal immunization that can provide protection from infection with wild-type virus has also not been demonstrated. In addition, although it is clear that adaptive immune responses can be generated in humanized mice, innate responses to viral infection have not been extensively examined.In this study, we evaluated three immunodeficient mouse strains for their abilities to engraft human umbilical cord-derived stem cells and support the differentiation of these cells into important innate and adaptive immune cells. The most appropriate model was then used to examine mucosal immune responses following primary HSV-2 infection, immunization, and secondary HSV-2 challenge. We show for the first time that the humanized mice can mount protective human NK cell-mediated innate immune responses to primary mucosal infection with HSV-2. In addition, mucosal immunization and infection can induce HSV-2-specific antibody production and, to a greater extent, T-cell-mediated responses both systemically and locally in the genital tracts of humanized mice. We further show that mucosal immunization can provide protection against a lethal intravaginal (IVAG) challenge with HSV-2.  相似文献   

15.
16.
17.
18.
Influenza A2 virions were found to contain protein kinase activity which was stimulated, like in other virion-associated kinases, with Mg++ and Nonidet-P 40 but not with cyclic AMP. The kinase phosphorylated only the NP-protein fraction of the influenza virions in the in vitro reaction. In contrast, none of the influenza virion proteins were phosphorylated significantly during the process of virus production in infected chorioallantoic membranes, The in vitro and in vivo phosphorylations of influenza viral proteins were compared with those of Sendai virus (HVJ).  相似文献   

19.
20.
A型流感病毒逃避免疫应答的策略   总被引:2,自引:0,他引:2  
综述了IAV逃避抗病毒免疫策略的最新进展.A型流感病毒(IAV)感染是人和多种动物呼吸系统疾病的主要原因,然而不管是IAV引起的季节性流感暴发还是周期性的全球流感大流行,主要归因于IAV逃避宿主免疫反应的策略.越来越多的证据表明,IAV已经进化出高超的策略克服宿主的抗病毒信号,如抗原变异和编码辅助蛋白(NS1和PB1-F2).深入理解IAV逃避宿主免疫的策略,有助于揭示IAV感染的机制和发现针对IAV的抗病毒药物的靶标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号