首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
YC Tu  CY Yu  JJ Liang  E Lin  CL Liao  YL Lin 《Journal of virology》2012,86(19):10347-10358
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.  相似文献   

2.
黏病毒抗性蛋白A(myxovirus resistance protein A,MxA)是由干扰素诱导的具有重要抗乙肝病毒(hepatitis B virus,HBV)功能的蛋白质,我们前期工作发现,MxA主要依赖其中心互作结构域(central interactive domain,CID)与病毒直接相互作用发挥功能,但其具体的抗病毒功能区以及功能区是否具有独立的抗病毒活性仍不清楚。本研究拟鉴定MxA蛋白上的抗乙肝病毒活性肽。首先从全长MxA构建缺失突变体ΔCID和截短体CID,以HepG2-2-15细胞为病毒模型,分别转染空载质粒、MxA、ΔCID和CID,免疫荧光法检测转染效率,Western印迹法检测质粒表达,酶联免疫法测定细胞培养液中HBsAg、HBeAg的量及荧光定量PCR法测定乙肝病毒 DNA的量,评估CID段的抗乙肝病毒活性。根据CID段的晶体结构,缩短肽段长度,构建α1、α2、α3等9段肽段质粒,鉴定各段的抗乙肝病毒活性和细胞毒性(MTT法)。运用计算生物学手段--分子对接法预测MxA蛋白与病毒相互作用的模式和位点。结果显示,ΔCID、CID和9段肽段质粒的序列及表达正确,9段肽段的表达量未见显著性差异,无显著的细胞毒性。CID组和黏病毒抗性蛋白A组较对照组乙肝病毒的复制水平显著降低,CID组细胞上清中HBsAg、HBeAg及乙肝病毒 DNA的量分别减少了55.57%±8.48%、68.37%±6.24%、66.67%±6.40%,P<0.01;MxA组的3个指标分别减少了61.63%±3.11%、70.77%±7.25%、73.73%±6.18%,P<0.01;ΔCID组较对照组无明显变化。9段肽段中α1组较对照组HBsAg、HBeAg及乙肝病毒 DNA的量有显著下降,分别减少了48.33%±1.70%、70.67%±3.30%、68.95%±2.55%,P<0.001,表明α1对乙肝病毒具有强抑制活性。分子对接的结果显示,384 ~ 408位氨基酸是MxA蛋白与病毒互作的关键位点,该区域落在α1肽段上,验证了α1是MxA蛋白抗乙肝病毒及与乙肝病毒相互作用中的关键区段。本研究筛选并鉴定出人干扰素诱导蛋白MxA上最有效的抗乙肝病毒活性肽α1,研究结果为抗乙肝病毒多肽类新药的研发奠定了基础。  相似文献   

3.
We have used the duck hepatitis B virus (DHBV) model to study the interference with infection by a myristoylated peptide representing an N-terminal pre-S subdomain of the large viral envelope protein. Although lacking the essential part of the carboxypeptidase D (formerly called gp180) receptor binding site, the peptide binds hepatocytes and subsequently blocks DHBV infection. Since its activity requires an amino acid sequence involved in host discrimination between DHBV and the related heron HBV (T. Ishikawa and D. Ganem, Proc. Natl. Acad. Sci. USA 92:6259-6263, 1995), we suggest that it is related to the postulated host-discriminating cofactor of infection.  相似文献   

4.
Virus Interference by Cellular Double-Stranded Ribonucleic Acid   总被引:9,自引:2,他引:7       下载免费PDF全文
Ribonuclease-resistant ribonucleic acid (RNA) was isolated from uridine-labeled cultures of rabbit kidney, chicken embryo, and HeLa cells. This RNA, regardless of its source, was found to induce interference with virus growth in either rabbit kidney or chicken embryo cultures. Nuclease-treated cellular nucleic acids exhibited interference-inducing activity which eluted with a small fraction of RNA in the exclusion volume of a 6% agarose gel column. Besides resistance to ribonucleases, the interference inducer and RNA isolated from partially digested nucleic acids have in common two properties of double-stranded RNA: (i) similar sharp melting profiles were obtained for inducer and ribonuclease-resistant RNA, with T(m) dependent on NaCl concentration; (ii) ribonuclease-resistant inducer and RNA banded together in Cs(2)SO(4) density gradients at a density characteristic of known double-stranded RNA. After melting at low ionic strength, the labeled RNA shifted to a higher density and its capacity to inhibit virus replication was lost. Velocity sedimentation analysis of the cellular ribonuclease-resistant RNA indicated that the majority sedimented between 7 and 11S, but only RNA sedimenting at >==8 to 20S had a high specific activity of interference induction. Without prior ribonuclease treatment, the ribonuclease-resistant RNA can be precipitated with 2 m LiCl and thus appears to exist in purified cellular nucleic acids as part of molecular complexes with both single- and double-stranded regions of RNA. The biosynthesis of cellular double-stranded RNA is inhibited by actinomycin D.  相似文献   

5.
Abstract

Degradation of double-stranded DNA by Exonuclease III in the presence of complementary anti-parallel PNA was studied. It was found for the first time that the PNA suppresses the degradation of dsDNA in a sequence-specific manner as well as inhibits the activity of Exonuclease III in a non-specific way.  相似文献   

6.
The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2α (eIF2α). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2α, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and λ repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.  相似文献   

7.
8.
9.
三链DNA的形成抑制DNA结合蛋白与启动子的结合   总被引:4,自引:1,他引:3  
电泳迁移分析方法及DNaseⅠ足迹实验表明21nt脱氧寡核苷酸G3TG2T GT2G5TG2TGT(CP1)与乙肝病毒(HBV)核心启动子(Cp)片段之间三链DNA的形成有较高的特异性及稳定性.凝胶滞留实验显示, 在大鼠肝细胞核提取物体外转录系统中, CP1可特异地抑制DNA结合蛋白与Cp片段的结合, 而不能与Cp结合形成三链DNA的脱氧寡核苷酸CP3(TGTG2TG5T2GTG2TG3)对蛋白与Cp的结合并无抑制作用.这些结果表明, 三链DNA的形成有可能抑制HBV DNA的转录.  相似文献   

10.
The stability of the structure of double-stranded DNA in the salt-free solution is discussed on the basis of the polyelectrolyte theory. Assuming that DNA is an infinitely long rod, and the formation of double strands is divided into combining process and folding process, the free energy changes required in these processes are calculated by the use of the exact solutions of two-dimensional Poisson-Boltzmann equation for the one rod and the two rod systems.

By strong depression of electrostatic interaction due to counter-ion condensation phenomena, the free energy change is remarkably decreased so that the double-stranded structure of DNA can be stabilized by energy of hydrogen bonds between base pairs. The increase of the activity coefficient of a counterion upon heat denaturation of DNA is also explained.

  相似文献   

11.
The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses.  相似文献   

12.
Genome-binding proteins with scaffolding and/or regulatory functions are common in living organisms and include histones in eukaryotic cells, histone-like proteins in some double-stranded DNA (dsDNA) viruses, and the nucleocapsid proteins of single-stranded RNA viruses. dsRNA viruses nevertheless lack these ribonucleoprotein (RNP) complexes and are characterized by sharing an icosahedral T = 2 core involved in the metabolism and insulation of the dsRNA genome. The birnaviruses, with a bipartite dsRNA genome, constitute a well-established exception and have a single-shelled T = 13 capsid only. Moreover, as in many negative single-stranded RNA viruses, the genomic dsRNA is bound to a nucleocapsid protein (VP3) and the RNA-dependent RNA polymerase (VPg). We used electron microscopy and functional analysis to characterize these RNP complexes of infectious bursal disease virus, the best characterized member of the Birnaviridae family. Mild disruption of viral particles revealed that VP3, the most abundant core protein, present at ∼ 450 copies per virion, is found in filamentous material tightly associated with the dsRNA. We developed a method to purify RNP and VPg-dsRNA complexes. Analysis of these complexes showed that they are linear molecules containing a constant amount of protein. Sensitivity assays to nucleases indicated that VP3 renders the genomic dsRNA less accessible for RNase III without introducing genome compaction. Additionally, we found that these RNP complexes are functionally competent for RNA synthesis in a capsid-independent manner, in contrast to most dsRNA viruses.  相似文献   

13.
Microbes have recently been recognized as dominant forces in nature, with studies benefiting from gene markers that can be quickly, informatively, and universally surveyed. Viruses, where explored, have proven to be powerful modulators of locally and globally important microbes through mortality, horizontal gene transfer, and metabolic reprogramming. However, community-wide virus studies have been challenged by the lack of a universal marker. Here, I propose that viral metagenomics has advanced to largely take over study of double-stranded DNA viruses.  相似文献   

14.
Kilham rat virus (KRV) contains linear, single-stranded DNA in the virion. The fate of radioactive viral DNA was followed after infection of monolayer cells. Within 60 min after infection of cells, 28 to 42% of the parental viral DNA is converted to a new form. This new DNA form is believed to be double stranded and linear on the basis of its sedimentation in neutral and alkaline sucrose gradients, elution from hydroxyapatite columns, its buoyant density in equilibrium CsCl density gradients, and appearance in the electron microscope. The double-stranded linear KRV DNA may be analogous to the replicative form of certain bacteriophages, including phiX174, which contain single-stranded circular genomes.  相似文献   

15.
Previous studies have noted the existence of a 190,000-dalton vesicular stomatitis virus (VSV) protein called the large (L) protein. To determine whether this protein is a nonspecific aggregate, a precursor to the other VSV proteins, or a unique viral protein, its synthesis relative to the other VSV proteins was studied under conditions of inhibition of initiation of protein synthesis. Also, its tryptic peptides were compared to those of the other VSV proteins. In both cases the results were consistent with the identification of the large protein as a unique viral protein.  相似文献   

16.
17.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitory effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs caused by cotransfection by corresponding plasmids did not inhibit expression of the reporter construct.  相似文献   

18.
19.
20.
The gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号