首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ejaculated mammalian sperm must complete a final maturation, termed capacitation, before they can undergo acrosomal exocytosis and fertilize an egg. In human sperm, loss of sperm sterol is an obligatory, early event in capacitation. How sterol loss leads to acrosomal responsiveness is unknown. These experiments tested the hypothesis that loss of sperm sterol affects the organization of cold detergent-resistant membrane microdomains (lipid "rafts"). The GPI-linked protein CD59, the ganglioside GM1, and the protein flotillin-2 were used as markers for lipid rafts. In uncapacitated sperm, 51% of the CD59, 41% of the GM1, and 90% of the flotillin-2 were found in the raft fraction. During capacitation, sperm lost 67% of their 3beta-hydroxysterols, and the percentages of CD59 and GM1 in the raft fraction decreased to 34% and 31%, respectively. The distribution of flotillin-2 did not change. Preventing a net loss of sperm sterol prevented the loss of CD59 and GM1 from the raft fraction. Fluorescence microscopy showed CD59 and GM1 to be distributed over the entire sperm surface. Flotillin-2 was located mainly in the posterior head and midpiece. Patching using bivalent antibodies indicated that little of the GM1 and CD59 was stably associated in the same membrane rafts. Likewise, GM1 and flotillin-2 were not associated in the same membrane rafts. In summary, lipid rafts of heterogeneous composition were identified in human sperm and the two raft components, GM1 and CD59, showed a partial sterol loss-dependent shift to the nonraft domain during capacitation.  相似文献   

2.
Simultaneous fluorescence-topographic nanoscale imaging of cell-surface molecules in the context of membrane ultra-structures has not been reported. Here, near-field scanning optical microscopy (NSOM)-based direct fluorescence-topographic imaging indicated that GM3 rafts/nanodomains (190.0 +/- 49.8 nm ranging 84.5-365.0 nm) were localized predominantly on the peaks of microvillus-like protrusions in the apical membrane of GM3 + Madin-Darby canine kidney cells, whereas GM1 rafts/nanodomains (159.5 +/- 63.8 nm ranging 42-360 nm) were distributed mainly on the slops of protrusions or the valleys between protrusions in the plasma membranes of GM1 + MDCK cells. The data demonstrated that gangliosides polarized not only in a well-known apical-basolateral manner but also in the more microscopic peak-valley manner, implicating unique distribution of GM1 or GM3 in cell-surface fluctuations on the apical membrane of polarized cells. The peak-valley polarities of gangliosides also implicated their different functions relevant to lipid rafts, microvilli, or cellular processes. Importantly, our study demonstrated for the first time that the NSOM-based direct fluorescence-topographic imaging is unique and powerful for elucidating nanoscale distribution of specific cell-surface molecules in membrane fluctuations.  相似文献   

3.
Jolly C  Sattentau QJ 《Journal of virology》2005,79(18):12088-12094
Human immunodeficiency virus type 1 (HIV-1) can spread directly between T cells by forming a supramolecular structure termed a virological synapse (VS). HIV-1 envelope glycoproteins (Env) are required for VS assembly, but their mode of recruitment is unclear. We investigated the distribution of GM1-rich lipid rafts in HIV-1-infected (effector) T cells and observed Env colocalization with polarized raft markers GM1 and CD59 but not with the transferrin receptor that is excluded from lipid rafts. In conjugates of effector T cells and target CD4+ T cells, GM1, Env, and Gag relocated to the cell-cell interface. The depletion of cholesterol in the infected cell dispersed Env and GM1 within the plasma membrane, eliminated Gag clustering at the site of cell-cell contact, and abolished assembly of the VS. Raft integrity is therefore critical for Env and Gag co-clustering and VS assembly in T-cell conjugates.  相似文献   

4.
Modulation of Fas-mediated apoptosis by lipid rafts in T lymphocytes   总被引:2,自引:0,他引:2  
In type I cells, Fas-mediated cell death requires cytoplasmic membrane subdomains called microdomains or lipid rafts. On the contrary, Fas signaling is independent of these structures in type II cells. We report that in human T cells, CD28, CD59, and CD55 are all localized into lipid rafts and that CD28 is concentrated into microdomains enriched in ganglioside GM1, whereas CD59 and CD55 are not. Moreover, CD28 cross-linking leads to the formation of lipid raft clusters which exclude CD59 and CD55, and reciprocally. Coligation of Fas with CD55 or CD59 inhibits the apoptotic signal, whereas CD28 recruitment amplifies the Fas signaling pathway. Therefore, we conclude that 1) different types of microdomains exist on the cell surface, with distinct functional properties and 2) the recruitment of these distinct structures may differentially modulate the Fas pathway. Moreover, our results demonstrate that Fas-induced apoptosis can be controlled at the level of the cytoplasmic membrane.  相似文献   

5.
Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48 ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40 ms and 12 ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

6.
Popik W  Alce TM  Au WC 《Journal of virology》2002,76(10):4709-4722
In this report, we describe a crucial role of lipid raft-colocalized receptors in the entry of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T cells. We show that biochemically isolated detergent-resistant fractions have characteristics of lipid rafts. Lipid raft integrity was required for productive HIV-1 entry as determined by (i) semiquantitative PCR analysis and (ii) single-cycle infectivity assay using HIV-1 expressing the luciferase reporter gene and pseudotyped with HIV-1 HXB2 envelope or vesicular stomatitis virus envelope glycoprotein (VSV-G). Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) relocalized raft-resident markers to a nonraft environment but did not significantly change the surface expression of HIV-1 receptors. MbetaCD treatment inhibited productive infection of HIV-1 by 95% as determined by luciferase activity in cells infected with HXB2 envelope-pseudotyped virus. In contrast, infection with VSV-G-pseudotyped virus, which enters the cells through an endocytic pathway, was not suppressed. Biochemical fractionation and confocal imaging of HIV-1 receptor distribution in live cells demonstrated that CD4, CCR5, and CXCR4 colocalized with raft-resident markers, ganglioside GM1, and glycosylphosphatidylinositol-anchored CD48. While confocal microscopy analysis revealed that HIV-1 receptors localized most likely to the same lipid microdomains, sucrose gradient analysis of the receptor localization showed that, in contrast to CD4 and CCR5, CXCR4 was associated preferentially with the nonraft membrane fraction. The binding of HIV-1 envelope gp120 to lipid rafts in the presence, but not in the absence, of cholesterol strongly supports our hypothesis that raft-colocalized receptors are directly involved in virus entry. Dramatic changes in lipid raft and HIV-1 receptor redistribution were observed upon binding of HIV-1 NL4-3 to PM1 T cells. Colocalization of CCR5 with GM1 and gp120 upon engagement of CD4 and CXCR4 by HIV-1 further supports our observation that HIV-1 receptors localize to the same lipid rafts in PM1 T cells.  相似文献   

7.
Cryptococcus neoformans is a neurotropic fungal pathogen, which provokes the onset of devastating meningoencephalitis. We used human brain microvascular endothelial cells (HBMEC) as the in vitro model to investigate how C. neoformans traverses across the blood-brain barrier. In this study, we present several lines of evidence indicating that C. neoformans invasion is mediated through the endocytic pathway via lipid rafts. Human CD44 molecules from lipid rafts can directly interact with hyaluronic acid, the C. neoformans ligand. Bikunin, which perturbs CD44 function in the lipid raft, can block C. neoformans adhesion and invasion of HBMEC. The lipid raft marker, ganglioside GM1, co-localizes with CD44 on the plasma membrane, and C. neoformans cells can adhere to the host cell in areas where GM1 is enriched. These findings suggest that C. neoformans entry takes place on the lipid rafts. Upon C. neoformans engagement, GM1 is internalized through vesicular structures to the nuclear membrane. This endocytic redistribution process is abolished by cytochalasin D, nocodazole, or anti-DYRK3 (dual specificity tyrosine-phosphorylation-regulated kinase 3) siRNA. Concomitantly, the knockdown of DYRK3 significantly reduces C. neoformans invasion across the HBMEC monolayer in vitro. Our data demonstrate that the lipid raft-dependent endocytosis process mediates C. neoformans internalization into HBMEC and that the CD44 protein of the hosts, cytoskeleton, and intracellular kinase-DYRK3 are involved in this process.  相似文献   

8.
Membrane rafts may act as platforms for membrane protein signalling. Rafts have also been implicated in the sorting of membrane components during membrane budding. We have studied by fluorescence microscopy cross-linking of ganglioside GM1 in the human erythrocyte membrane, and how membrane proteins CD47 and CD59 distribute in GM1 patched discoid cells and calcium-induced echinocytic cells. Patching of ganglioside(M1) (GM1) by cholera toxin subunit B (CTB) plus anti-CTB resulted in the formation of usually 40-60 GM1 patches distributed over the membrane in discoid erythrocytes. Pre-treatment of erythrocytes with methyl-beta-cyclodextrin abolished GM1 patching. GM1 patching was insensitive to pre-fixation (paraformaldehyde) of cells. Patching of GM1 did not affect the discoid shape of erythrocytes. Membrane proteins CD47 and CD59 did not accumulate into GM1 patches. No capping of patches occurred. GM1 accumulated in calcium-induced echinocytic spiculae. Also CD59, but not CD47, accumulated in spiculae. However, CD59 showed a low degree of co-localization with GM1 and frequently accumulated in different spiculae than GM1. In conclusion, our study describes a novel method for examining properties and composition of rafts. The study characterizes raft patching in the human erythrocyte membrane and emphasizes the mobility and 'echinophilicity' of GM1. Glycosyl phosphatidylinositol-anchored CD59 was identified as a mobile 'echinophilic' but 'raftophobic(GM1)' protein. Largely immobile CD47 showed no segregation.  相似文献   

9.
Membrane rafts may act as platforms for membrane protein signalling. Rafts have also been implicated in the sorting of membrane components during membrane budding. We have studied by fluorescence microscopy cross-linking of ganglioside GM1 in the human erythrocyte membrane, and how membrane proteins CD47 and CD59 distribute in GM1 patched discoid cells and calcium-induced echinocytic cells. Patching of gangliosideM1 (GM1) by cholera toxin subunit B (CTB) plus anti-CTB resulted in the formation of usually 40–60 GM1 patches distributed over the membrane in discoid erythrocytes. Pre-treatment of erythrocytes with methyl-β-cyclodextrin abolished GM1 patching. GM1 patching was insensitive to pre-fixation (paraformaldehyde) of cells. Patching of GM1 did not affect the discoid shape of erythrocytes. Membrane proteins CD47 and CD59 did not accumulate into GM1 patches. No capping of patches occurred. GM1 accumulated in calcium-induced echinocytic spiculae. Also CD59, but not CD47, accumulated in spiculae. However, CD59 showed a low degree of co-localization with GM1 and frequently accumulated in different spiculae than GM1. In conclusion, our study describes a novel method for examining properties and composition of rafts. The study characterizes raft patching in the human erythrocyte membrane and emphasizes the mobility and ‘echinophilicity’ of GM1. Glycosyl phosphatidylinositol-anchored CD59 was identified as a mobile ‘echinophilic’ but ‘raftophobicGM1’ protein. Largely immobile CD47 showed no segregation.  相似文献   

10.
GOTO cells, a neuroblastoma cell line retaining the ability to differentiate into neuronal or Schwann cells, were found to be rich in membrane rafts containing ganglioside GM2 and hypersensitive to lipid raft-disrupting methyl-β-cyclodextrin (MβCD); the GM2-rich rafts and sensitivity to MβCD were markedly diminished upon their differentiation into Schwann cells. We first raised a monoclonal antibody that specifically binds to GOTO cells but not to differentiated Schwann cells and determined its target antigen as ganglioside GM2, which was shown to be highly concentrated in lipid rafts by its colocalization with flotillin, a marker protein of rafts. Disturbance of normal structure of the lipid raft by depleting its major constituent, cholesterol, with MβCD resulted in acute apoptotic cell death of GOTO cells, but little effects were seen on differentiated Schwann cells. Until this study, GM2-rich rafts are poorly characterized and MβCD hypersensitivity, which may have clinical implications, has not been reported.  相似文献   

11.
Lipid rafts play an important role in cell signalling, cell adhesion and other cellular functions. Compositional heterogeneity of lipid rafts provides one mechanism of how lipid rafts provide the spatial and temporal regulation of cell signalling and cell adhesion. The constitutive presence of some signalling receptors/molecules and accumulation of others in the lipid raft allows them to interact with each other and thereby facilitate relay of signals from the plasma membrane to the cell interior. Devising a method that can analyze these lipid microdomains for the presence of signalling receptors/molecules on an individual raft basis is required to address the issue of lipid raft heterogeneity. SDS-PAGE analysis, currently used for analyses of detergent-resistant lipid rafts, does not address this question. We have designed a cell-free assay that captures detergent-resistant lipid rafts with an antibody against a raft-resident molecule and detects the presence of another lipid raft molecule. Our results suggest that detergent-resistant lipid rafts, also known as detergent-resistant membranes, are heterogeneous populations on an immortalized mouse T-cell plasma membrane with respect to antigen receptor/signalling complex and other signalling/adhesion proteins. This cell-free assay provides a simple and quick way to examine the simultaneous presence of two proteins in the lipid rafts and has the potential to estimate trafficking of molecules in and out of the lipid microdomains during cell signalling on a single detergent-resistant lipid raft basis.  相似文献   

12.
The scavenger receptor CD36 binds a diverse array of ligands, including thrombospondin-1, oxidized low density lipoprotein (OxLDL), fatty acids, anionic phospholipids, and apoptotic cells. CD36 has been reported to be present in lipid rafts/caveolae, but little is known about the membrane trafficking of this protein at baseline or following ligand binding. Here, we determined that expression of CD36 in Chinese hamster ovary (CHO) cells and endogenous expression of CD36 in C32 cells led to a homogeneous distribution of the protein on the plasma membrane, as judged by confocal fluorescence microscopy. This homogeneous pattern was observed both by anti-CD36 antibody staining and by live cell imaging of CHO cells expressing a chimeric CD36-green fluorescent protein construct. In contrast, caveolin-1 displayed its usual punctate surface distribution. Correspondingly, dual labeling of CD36 and caveolin-1 showed essentially no overlap, neither by immunofluorescence light microscopy nor by immunogold electron microscopy. Furthermore, isolation of lipid rafts by sucrose gradient ultracentrifugation of cold Triton X-100 cell lysates yielded both CD36 and caveolin-1, but immunoprecipitates of caveolin-1 did not contain CD36. Binding of Ox-LDL led to internalization of CD36 and OxLDL into endosomal structures that did not contain caveolin-1 or transferrin but that co-internalized the glycosyl-phosphatidylinositol-anchored protein decay accelerating factor, a lipid raft protein. Furthermore, expression of CD36 in the caveolin-1-negative KB cell line is sufficient for OxLDL-induced internalization of CD36, indicating that caveolin-1 is not required for this endocytic process. Taken together, these data demonstrate that at steady state, CD36 is localized in lipid rafts but not in caveolae, and that binding of OxLDL to CD36 leads to endocytosis through a lipid raft pathway that is distinct from the clathrin-mediated or caveolin internalization pathways.  相似文献   

13.
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.  相似文献   

14.
T cell polarization and redistribution of cellular components are critical to processes such as activation, migration, and potentially HIV infection. Here, we investigate the effects of CD4 engagement on the redistribution and localization of chemokine receptors, CXCR4 and CCR5, adhesion molecules, and lipid raft components including cholesterol, GM1, and glycosyl-phosphatidylinositol (GPI)-anchored proteins. We demonstrate that anti-CD4-coated beads (alpha CD4-B) rapidly induce co-capping of chemokine receptors as well as GPI-anchored proteins and adhesion molecules with membrane cholesterol and lipid rafts on human T cell lines and primary T cells to the area of bead-cell contact. This process was dependent on the presence of cellular cholesterol, cytoskeletal reorganization, and lck signaling. Lck-deficient JCaM 1.6 cells failed to cap CXCR4 or lipid rafts to alpha CD4-B. Biochemical analysis reveals that CXCR4 and LFA-1 are recruited to lipid rafts upon CD4 but not CD45 engagement. Furthermore, we also demonstrate T cell capping of both lipid rafts and chemokine receptors at sites of contact with HIV-infected cells, despite the binding of an HIV inhibitory mAb to CXCR4. We conclude that cell surface rearrangements in response to CD4 engagement may serve as a means to enhance cell-to-cell signaling at the immunological synapse and modulate chemokine responsiveness, as well as facilitate HIV entry and expansion by synaptic transmission.  相似文献   

15.
Fish oil (FO) targets lipid microdomain organization to suppress T-cell and macrophage function; however, little is known about this relationship with B cells, especially at the animal level. We previously established that a high FO dose diminished mouse B-cell lipid raft microdomain clustering induced by cross-linking GM1. To establish relevance, here we tested a FO dose modeling human intake on B-cell raft organization relative to a control. Biochemical analysis revealed more docosahexaenoic acid (DHA) incorporated into phosphatidylcholines than phosphatidylethanolamines of detergent-resistant membranes, consistent with supporting studies with model membranes. Subsequent imaging experiments demonstrated that FO increased raft size, GM1 expression, and membrane order upon cross-linking GM1 relative to no cross-linking. Comparative in vitro studies showed some biochemical differences from in vivo measurements but overall revealed that DHA, but not eicosapentaenoic acid (EPA), increased membrane order. Finally, we tested the hypothesis that disrupting rafts with FO would suppress B-cell responses ex vivo. FO enhanced LPS-induced B-cell activation but suppressed B-cell stimulation of transgenic naive CD4(+) T cells. Altogether, our studies with B cells support an emerging model that FO increases raft size and membrane order accompanied by functional changes; furthermore, the results highlight differences in EPA and DHA bioactivity.  相似文献   

16.
Advanced single-molecule fluorescent imaging was applied to study the dynamic organization of raft-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the plasma membrane and their stimulation-induced changes. In resting cells, virtually all of the GPI-APs are mobile and continually form transient (~200 ms) homodimers (termed homodimer rafts) through ectodomain protein interactions, stabilized by the presence of the GPI-anchoring chain and cholesterol. Heterodimers do not form, suggesting a fundamental role for the specific ectodomain protein interaction. Under higher physiological expression conditions , homodimers coalesce to form hetero- and homo-GPI-AP oligomer rafts through raft-based lipid interactions. When CD59 was ligated, it formed stable oligomer rafts containing up to four CD59 molecules, which triggered intracellular Ca(2+) responses that were dependent on GPI anchorage and cholesterol, suggesting a key part played by transient homodimer rafts. Transient homodimer rafts are most likely one of the basic units for the organization and function of raft domains containing GPI-APs.  相似文献   

17.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   

18.
The antibody 13B8.2, which is directed against the CDR3-like loop on the D1 domain of CD4, induces CD4/ZAP-70 reorganization and ceramide release in membrane rafts. Here, we investigated whether CD4/ZAP-70 compartmentalization could be mediated by an effect of 13B8.2 on the Carma1–Bcl10–MALT1 complex in membrane rafts. We report that treatment of CD3/CD28-activated Jurkat T cells with 13B8.2, but not rituximab, excluded Carma1–Bcl10–MALT1 proteins from GM1+ membrane rafts and concomitantly decreased NF-κB activation. Fluorescence confocal imaging confirmed that Carma1–Bcl10 and Carma1-MALT1 co-patching, observed in GM1+ membrane rafts following CD3/CD28 activation, were abrogated after a 24 h-treatment with 13B8.2. The CD4/ZAP-70 compartmentalization in membrane rafts induced by 13B8.2 is thus related to Carma1–Bcl10–MALT1 raft exclusion.  相似文献   

19.
A number of recent studies have demonstrated the significance of detergent-insoluble, glycolipid-enriched membrane domains or lipid rafts, especially in regard to activation and signaling in T lymphocytes. These domains can be viewed as floating rafts composed of sphingolipids and cholesterol which sequester glycosylphosphatidylinositol (GPI)-linked proteins, such as Thy-1 and CD59. CD45, a 200-kDa transmembrane phosphatase protein, is excluded from these domains. We have found that human immunodeficiency virus type 1 (HIV-1) particles produced by infected T-cell lines acquire the GPI-linked proteins Thy-1 and CD59, as well as the ganglioside GM1, which is known to partition preferentially into lipid rafts. In contrast, despite its high expression on the cell surface, CD45 was poorly incorporated into virus particles. Confocal fluorescence microscopy revealed that HIV-1 proteins colocalized with Thy-1, CD59, GM1, and a lipid raft-specific fluorescent lipid, DiIC(16)(3), in uropods of infected Jurkat cells. CD45 did not colocalize with HIV-1 proteins and was excluded from uropods. Dot immunoassay of Triton X-100-extracted membrane fractions revealed that HIV-1 p17 matrix protein and gp41 were present in the detergent-resistant fractions and that [(3)H]myristic acid-labeled HIV Gag showed a nine-to-one enrichment in lipid rafts. We propose a model for the budding of HIV virions through lipid rafts whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafts.  相似文献   

20.
Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid‐rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar‐lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro‐angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid‐supported mobile bilayer lipid membranes with raft‐like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR‐GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1‐enriched biomimetic membranes, were validated by identifying a pro‐angiogenic activity of GM1‐enriched EPCs, based on GM1‐dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti‐angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar‐raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar‐raft partitioning of uPAR, as opposed to control and GM3‐challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号