首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.

Background

The estimated prevalence of HCV infection in Argentina is around 2%. However, higher rates of infection have been described in population studies of small urban and rural communities. The aim of this work was to compare the origin and diversification of HCV-1b in samples from two different epidemiological scenarios: Buenos Aires, a large cosmopolitan city, and O''Brien, a small rural town with a high prevalence of HCV infection.

Patients and Methods

The E1/E2 and NS5B regions of the viral genome from 83 patients infected with HCV-1b were sequenced. Phylogenetic analysis and Bayesian Coalescent methods were used to study the origin and diversification of HCV-1b in both patient populations.

Results

Samples from Buenos Aires showed a polyphyletic behavior with a tMRCA around 1887–1900 and a time of spread of infection approximately 60 years ago. In contrast, samples from ÓBrien showed a monophyletic behavior with a tMRCA around 1950–1960 and a time of spread of infection more recent than in Buenos Aires, around 20–30 years ago.

Conclusion

Phylogenetic and coalescence analysis revealed a different behavior in the epidemiological histories of Buenos Aires and ÓBrien. HCV infection in Buenos Aires shows a polyphyletic behavior and an exponential growth in two phases, whereas that in O''Brien shows a monophyletic cluster and an exponential growth in one single step with a more recent tMRCA. The polyphyletic origin and the probability of encountering susceptible individuals in a large cosmopolitan city like Buenos Aires are in agreement with a longer period of expansion. In contrast, in less populated areas such as O''Brien, the chances of HCV transmission are strongly restricted. Furthermore, the monophyletic character and the most recent time of emergence suggest that different HCV-1b ancestors (variants) that were in expansion in Buenos Aires had the opportunity to colonize and expand in O’Brien.  相似文献   

2.
3.

Background

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is now the most common cause of skin and skin structure infections (SSSI) in several world regions. In Argentina prospective, multicenter clinical studies have only been conducted in pediatric populations.

Objective

Primary: describe the prevalence, clinical and demographic characteristics of adult patients with community acquired SSSI due to MRSA; secondary: molecular evaluation of CA-MRSA strains. Patients with MRSA were compared to those without MRSA.

Materials and Methods

Prospective, observational, multicenter, epidemiologic study, with molecular analysis, conducted at 19 sites in Argentina (18 in Buenos Aires) between March 2010 and October 2011. Patients were included if they were ≥14 years, were diagnosed with SSSI, a culture was obtained, and there had no significant healthcare contact identified. A logistic regression model was used to identify factors associated with CA-MRSA. Pulse field types, SCCmec, and PVL status were also determined.

Results

A total of 311 patients were included. CA-MRSA was isolated in 70% (218/311) of patients. Clinical variables independently associated with CA-MRSA were: presence of purulent lesion (OR 3.29; 95%CI 1.67, 6.49) and age <50 years (OR 2.39; 95%CI 1.22, 4.70). The vast majority of CA-MRSA strains causing SSSI carried PVL genes (95%) and were SCCmec type IV. The sequence type CA-MRSA ST30 spa t019 was the predominant clone.

Conclusions

CA-MRSA is now the most common cause of SSSI in our adult patients without healthcare contact. ST30, SCCmec IV, PVL+, spa t019 is the predominant clone in Buenos Aires, Argentina.  相似文献   

4.

Introduction

The Argentinean AIDS Program estimates that 110,000 persons are living with HIV/AIDS in Argentina. Of those, approximately 40% are unaware of their status, and 30% are diagnosed in advanced stages of immunosuppression. Though studies show that universal HIV screening is cost-effective in settings with HIV prevalence greater than 0.1%, in Argentina, with the exception of antenatal care, HIV testing is always client-initiated.

Objective

We performed a pilot study to assess the acceptability of a universal HIV screening program among inpatients of an urban public hospital in Buenos Aires.

Methods

Over a six-month period, all eligible adult patients admitted to the internal medicine ward were offered HIV testing. Demographics, uptake rates, reasons for refusal and new HIV diagnoses were analyzed.

Results

Of the 350 admissions during this period, 249 were eligible and subsequently enrolled. The enrolled population was relatively old compared to the general population, was balanced on gender, and did not report traditional high risk factors for HIV infection. Only 88 (39%) reported prior HIV testing. One hundred and ninety (76%) patients accepted HIV testing. In multivariable analysis only younger age (OR 1.02; 95%CI 1.003-1.05) was independently associated with test uptake. Three new HIV diagnoses were made (undiagnosed HIV prevalence: 1.58%); none belonged to a most-at-risk population.

Conclusions

Our findings suggest that universal HIV screening in this setting is acceptable and potentially effective in identifying undiagnosed HIV-infected individuals. If confirmed in a larger study, our findings may inform changes in the Argentinean HIV testing policy.  相似文献   

5.
6.

Background

Knowledge about genetic diversity and relationships among germplasms could be an invaluable aid in diospyros improvement strategies.

Methods

This study was designed to analyze the genetic diversity and relationship of local and natural varieties in Guangxi Zhuang Autonomous Region of China using start codon targeted polymorphism (SCoT) markers. The accessions of 95 diospyros germplasms belonging to four species Diospyros kaki Thunb, D. oleifera Cheng, D. kaki var. silverstris Mak, and D. lotus Linn were collected from different eco-climatic zones in Guangxi and were analyzed using SCoT markers.

Results

Results indicated that the accessions of 95 diospyros germplasms could be distinguished using SCoT markers, and were divided into three groups at similarity coefficient of 0.608; these germplasms that belong to the same species were clustered together; of these, the degree of genetic diversity of the natural D. kaki var. silverstris Mak population was richest among the four species; the geographical distance showed that the 12 natural populations of D. kaki var. silverstris Mak were divided into two groups at similarity coefficient of 0.19. Meanwhile, in order to further verify the stable and useful of SCoT markers in diospyros germplasms, SSR markers were also used in current research to analyze the genetic diversity and relationship in the same diospyros germplasms. Once again, majority of germplasms that belong to the same species were clustered together. Thus SCoT markers were stable and especially useful for analysis of the genetic diversity and relationship in diospyros germplasms.

Discussion

The molecular characterization and diversity assessment of diospyros were very important for conservation of diospyros germplasm resources, meanwhile for diospyros improvement.  相似文献   

7.

Backgound and Aims

Extending the cultivation of forage legume species into regions where they are close to the margin of their natural distribution requires knowledge of population responses to environmental stresses. This study was conducted at three north European sites (Iceland, Sweden and the UK) using AFLP markers to analyse changes in genetic structure over time in two population types of red and white clover (Trifolium pratense and T. repens, respectively): (1) standard commercial varieties; (2) wide genetic base (WGB) composite populations constructed from many commercial varieties plus unselected material obtained from germplasm collections.

Methods

At each site populations were grown in field plots, then randomly sampled after 3–5 years to obtain survivor populations. AFLP markers were used to calculate genetic differentiation within and between original and survivor populations.

Key Results

No consistent changes in average genetic diversity were observed between original and survivor populations. In both species the original varieties were always genetically distinct from each other. Significant genetic shift was observed in the white clover ‘Ramona’ grown in Sweden. The WGB original populations were more genetically similar. However, genetic differentiation occurred between original and survivor WGB germplasm in both species, particularly in Sweden. Regression of climatic data with genetic differentiation showed that low autumn temperature was the best predictor. Within the set of cold sites the highest level of genetic shift in populations was observed in Sweden.

Conclusions

The results suggest that changes in population structure can occur within a short time span in forage legumes, resulting in the rapid formation of distinct survivor populations in environmentally challenging sites.  相似文献   

8.
9.
T Wang  Y Su  Y Li 《PloS one》2012,7(7):e41780

Background

Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation.

Methodology/Principal Findings

Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations.

Conclusions/Significance

Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.  相似文献   

10.
11.

Background

Introgression populations are used to make the genetic variation of unadapted germplasm or wild relatives of crops available for plant breeding. They consist of introgression lines that carry small chromosome segments from an exotic donor in the genetic background of an elite line. The goal of our study was to investigate the detection of favorable donor chromosome segments in introgression lines with statistical methods developed for genome-wide prediction.

Results

Computer simulations showed that genome-wide prediction employing heteroscedastic marker variances had a greater power and a lower false positive rate compared with homoscedastic marker variances when the phenotypic difference between the donor and recipient lines was controlled by few genes. The simulations helped to interpret the analyses of glycosinolate and linolenic acid content in a rapeseed introgression population and plant height in a rye introgression population. These analyses support the superiority of genome-wide prediction approaches that use heteroscedastic marker variances.

Conclusions

We conclude that genome-wide prediction methods in combination with permutation tests can be employed for analysis of introgression populations. They are particularly useful when introgression lines carry several donor segments or when the donor segments of different introgression lines are overlapping.  相似文献   

12.

Background

The true interest of genetic immunisation might have been hastily underestimated based on overall immunogenicity data in humans and lack of parallelism with other, more classical immunisation methods.

Principal Findings

Using malaria Liver Stage Antigen-3 (LSA-3), we report that genetic immunization induces in chimpanzees, the closest relative of humans, immune responses which are as scarce as those reported using other DNA vaccines in humans, but which nonetheless confer strong, sterile and reproducible protection. The pattern was consistent in 3/4 immunized apes against two high dose sporozoite challenges performed as late as 98 and 238 days post-immunization and by a heterologous strain.

Conclusions

These results should, in our opinion, lead to a revisiting of the value of this unusual means of immunisation, using as a model a disease, malaria, in which virulent challenges of volunteers are ethically acceptable.  相似文献   

13.

Background

Dog breeds lose genetic diversity because of high selection pressure. Breeding policies aim to minimize kinship and therefore maintain genetic diversity. However, policies like mean kinship and optimal contributions, might be impractical. Cluster analysis of kinship can elucidate the population structure, since this method divides the population in clusters of related individuals. Kinship-based analyses have been carried out on the entire Icelandic Sheepdog population, a sheep-herding breed.

Results

Analyses showed that despite increasing population size and deliberately transferring dogs, considerable genetic diversity has been lost. When cluster analysis was based on kinships calculated seven generation backwards, as performed in previous studies, results differ markedly from those based on calculations going back to the founder-population, and thus invalidate recommendations based on previous research. When calculated back to the founder-population, kinship-based clustering reveals the distribution of genetic diversity, similarly to strategies using mean kinship.

Conclusion

Although the base population consisted of 36 Icelandic Sheepdog founders, the current diversity is equivalent to that of only 2.2 equally contributing founders with no loss of founder alleles in descendants. The maximum attainable diversity is 4.7, unlikely achievable in a non-supervised breeding population like the Icelandic Sheepdog. Cluster analysis of kinship coefficients can provide a supporting tool to assess the distribution of available genetic diversity for captive population management.  相似文献   

14.

Background and Aims

The association of clonality, polyploidy and reduced fecundity has been identified as an extinction risk for clonal plants. Compromised sexual reproduction limits both their ability to adapt to new conditions and their capacity to disperse to more favourable environments. Grevillea renwickiana is a prostrate, putatively sterile shrub reliant on asexual reproduction. Dispersal is most likely limited by the rate of clonal expansion via rhizomes. The nine localized populations constituting this species provide an opportunity to examine the extent of clonality and spatial genotypic diversity to evaluate its evolutionary prospects.

Methods

Ten microsatellite loci were used to compare genetic and genotypic diversity across all sites with more intensive sampling at four locations (n = 185). The spatial distribution of genotypes and chloroplast DNA haplotypes based on the trnQ–rps16 intergenic spacer region were compared. Chromosome counts provided a basis for examining genetic profiles inconsistent with diploidy.

Key Results

Microsatellite analysis identified 46 multilocus genotypes (MLGs) in eight multilocus clonal lineages (MLLs). MLLs are not shared among sites, with two exceptions. Spatial autocorrelation was significant to 1·6 km. Genotypic richness ranged from 0 to 0·33. Somatic mutation is likely to contribute to minor variation between MLGs within clonal lineages. The eight chloroplast haplotypes identified were correlated with eight MLLs defined by ordination and generally restricted to single populations. Triploidy is the most likely reason for tri-allelic patterns.

Conclusions

Grevillea renwickiana comprises few genetic individuals. Sterility has most likely been induced by triploidy. Extensive lateral suckering in long-lived sterile clones facilitates the accumulation of somatic mutations, which contribute to the measured genetic diversity. Genetic conservation value may not be a function of population size. Despite facing evolutionary stagnation, sterile clonal species can play a vital role in mitigating ecological instability as floras respond to rapid environmental change.  相似文献   

15.

Background and Aims

Knowledge on how climate-induced range shifts might affect natural selection is crucial to understand the evolution of species ranges.

Methods

Using historical demographic perspectives gathered from regional-scale phylogeography on the alpine herb Biscutella laevigata, indirect inferences on gene flow and signature of selection based on AFLP genotyping were compared between local populations persisting at the trailing edge and expanding at the leading edge.

Key Results

Spatial autocorrelation revealed that gene flow was two times more restricted at the trailing edge and genome scans indicated divergent selection in this persisting population. In contrast, no pattern of selection emerged in the expanding population at the leading edge.

Conclusions

Historical effects may determine different architecture of genetic variation and selective patterns within local populations, what is arguably important to understand evolutionary processes acting across the species ranges.  相似文献   

16.

Background and Aims

Riparian systems are prone to invasion by alien plant species. The spread of invasive riparian plants may be facilitated by hydrochory, the transport of seeds by water, but while ecological studies have highlighted the possible role of upstream source populations in the establishment and persistence of stands of invasive riparian plant species, population genetic studies have as yet not fully addressed the potential role of hydrochoric dispersal in such systems.

Methods

A population genetics approach based on a replicated bifurcate sampling design is used to test hypotheses consistent with patterns of unidirectional, linear gene flow expected under hydrochoric dispersal of the invasive riparian plant Impatiens glandulifera in two contrasting river systems.

Key results

A significant increase in levels of genetic diversity downstream was observed, consistent with the accumulation of propagules from upstream source populations, and strong evidence was found for organization of this diversity between different tributaries, reflecting the dendritic organization of the river systems studied.

Conclusions

These findings indicate that hydrochory, rather than anthropogenic dispersal, is primarily responsible for the spread of I. glandulifera in these river systems, and this is relevant to potential approaches to the control of invasive riparian plant species.  相似文献   

17.

Background

Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world.

Results

The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits.

Conclusions

The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.  相似文献   

18.

Background and Aims

Land-use changes and associated extinction/colonization dynamics can have a large impact on population genetic diversity of plant species. The aim of this study was to investigate genetic diversity in a founding population of the self-incompatible forest herb Primula elatior and to elucidate the processes that affect genetic diversity shortly after colonization.

Methods

AFLP markers were used to analyse genetic diversity across three age classes and spatial genetic structure within a founding population of P. elatior in a recently established stand in central Belgium. Parentage analyses were used to assess the amount of gene flow from outside the population and to investigate the contribution of mother plants to future generations.

Results

The genetic diversity of second and third generation plants was significantly reduced compared with that of first generation plants. Significant spatial genetic structure was observed. Parentage analyses showed that <20 % of the youngest individuals originated from parents outside the study population and that >50 % of first and second generation plants did not contribute to seedling recruitment.

Conclusions

These results suggest that a small effective population size and genetic drift can lead to rapid decline of genetic diversity of offspring in founding populations shortly after colonization. This multigenerational study also highlights that considerable amounts of gene flow seem to be required to counterbalance genetic drift and to sustain high levels of genetic diversity after colonization in recently established stands.Key words: AFLP, colonization, forest regeneration, genetic diversity, genetic drift, parentage analysis, spatial genetic structure  相似文献   

19.

Background

Previous studies have shown substantial differences in Sodalis glossinidius and trypanosome infection rates between Glossina palpalis palpalis populations from two Cameroonian foci of human African trypanosomiasis (HAT), Bipindi and Campo. We hypothesized that the geographical isolation of the two foci may have induced independent evolution in the two areas, resulting in the diversification of symbiont genotypes.

Methodology/Principal Findings

To test this hypothesis, we investigated the symbiont genetic structure using the allelic size variation at four specific microsatellite loci. Classical analysis of molecular variance (AMOVA) and differentiation statistics revealed that most of the genetic diversity was observed among individuals within populations and frequent haplotypes were shared between populations. The structure of genetic diversity varied at different geographical scales, with almost no differentiation within the Campo HAT focus and a low but significant differentiation between the Campo and Bipindi HAT foci.

Conclusions/Significance

The data provided new information on the genetic diversity of the secondary symbiont population revealing mild structuring. Possible interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species should be further investigated.  相似文献   

20.

Background and Aims

Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin.

Methods

The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars.

Key Results

Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives.

Conclusions

This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号