首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motion camouflage is a stealth strategy that allows a predator to conceal its apparent motion as it approaches a moving prey. Although male hoverflies have been observed to move in a manner consistent with motion camouflage to track females, the successful application of the technique has not previously been demonstrated. This article describes the implementation and results of a psychophysical experiment suggesting that humans are susceptible to motion camouflage. The experiment masqueraded as a computer-game competition. The basis of the competition was a game designed to test the comparative success of different predatory-approach strategies. The experiment showed that predators were able to approach closer to their prey (the player of the game) before being detected when using motion camouflage than when using other approach strategies tested. For an autonomous predator, the calculation of a motion-camouflage approach is a non-trivial problem. It was, therefore, of particular interest that in the game the players were deceived by motion-camouflage predators controlled by artificial neural systems operating using realistic levels of input information. It is suggested that these results are especially of interest to biologists, visual psychophysicists, military engineers and computer-games designers.  相似文献   

2.
Visual background complexity facilitates the evolution of camouflage   总被引:2,自引:0,他引:2  
Abstract.— Cryptic animal coloration or camouflage is an adaptation that decreases the risk of detection. The study of the evolution of camouflage has strongly emphasized the minimization of visual information that predators receive from prey, by means of background matching. However, the evolutionary effects of information processing after its reception have been virtually ignored. I constructed a model that employs an artificial neural network and simulates the evolution of prey coloration in a visually complex and simple habitat. The model suggests: (1) the difficulty of a detection task is related to the visual complexity of the habitat; (2) it is easier to decrease the risk of detection by the means of camouflage in a visually complex habitat; (3) selection on camouflage can exploit limitations in predators information processing; and (4) there are shortcomings in using the degree of background matching as the measure of camouflage.  相似文献   

3.
4.
Parent birds employ various strategies to protect their offspring against nest predators. Two well‐researched anti‐nest‐predation strategies involve visual concealment of the nest by way of parental camouflage and egg camouflage. By contrast, camouflage of nest structures is relatively under‐researched, particularly in the case of cup‐nests in trees and bushes. We explored how birds camouflage cup‐nests in nature. Specifically, we tested Hansell’s hypothesis that birds use externally applied pale and white objects such as spider cocoons and lichens to achieve cup‐nest camouflage. To test Hansell’s hypothesis, three complementary experiments were performed: (1) an in situ nest predation experiment; (2) a photo‐based visual search experiment; and (3) contrast analyses using PAT‐GEOM software in IMAGEJ. White paper and chalk spots were used to mimic white objects used by birds in nature. Whereas predation rates in Experiment 1 were not affected by white spots, location rates in Experiment 2 were lower for natural nests with white spots than without white spots. Experiment 3 demonstrated that white spots significantly increased the contrast between different visual elements of nests. It was concluded that white objects can potentially camouflage nests against some nest predators, and that any improved camouflage was probably achieved via disruptive camouflage.  相似文献   

5.
Species that change colour present an ideal opportunity to study the control and tuning of camouflage with regards to the background. However, most research on colour‐pattern change and camouflage has been undertaken with species that rapidly alter appearance (in seconds), despite the fact that most species change appearance over longer time periods (e.g. minutes, hours, or days). We investigated whether individuals of the horned ghost crab (Ocypode ceratophthalmus) from Singapore can change colour, when this occurs, and how it influences camouflage. Individuals showed a clear daily rhythm of colour change, becoming lighter during the day and darker at night, and this significantly improved their camouflage to the sand substrate upon which they live. Individuals did not change colour when put into dark conditions, but they did become brighter when placed on a white versus a black substrate. Our findings show that ghost crabs have a circadian rhythm of colour change mediating camouflage, which is fine‐tuned by adaptation to the background brightness. These types of colour change can enable individuals to achieve effective camouflage under a range of environmental conditions, substrates, and time periods, and may be widespread in other species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 257–270.  相似文献   

6.
Hultgren KM  Stachowicz JJ 《Oecologia》2008,155(3):519-528
Although camouflage is a common predator defense strategy across a wide variety of organisms, direct tests of the adaptive and ecological consequences of camouflage are rare. In this study, we demonstrated that closely related crabs in the family Epialtidae coexist in the same algal environment but use alternative forms of camouflage––decoration and color change––to protect themselves from predation. Decoration and color change are both plastic camouflage strategies in that they can be changed to match different habitats: decoration occurs on a short timescale (hours to days), while color change accompanies molting and occurs on longer timescales (months). We found that the species that decorated the most had the lowest magnitude of color change (Pugettia richii); the species that decorated the least showed the highest magnitude of color change (Pugettia producta), and a third species (Mimulus foliatus) was intermediate in both decoration and color change, suggesting a negative correlation in utilization of these strategies. This negative correlation between color change and decoration camouflage utilization mirrored the effectiveness of these camouflage strategies in reducing predation in different species. Color camouflage primarily reduced predation on P. producta, while decoration camouflage (but not color camouflage) reduced predation on P. richii. These results indicate there might be among-species trade-offs in utilization and/or effectiveness of these two forms of plastic camouflage, with important consequences for distribution of these species among habitats and the evolution of different camouflage strategies in this group.  相似文献   

7.
Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.  相似文献   

8.
Camouflage is one of the most widespread antipredator defences, and its mechanistic basis has attracted considerable interest in recent years. The effectiveness of camouflage depends on the interaction between an animal's appearance and its background. Concealment can therefore be improved by changes to an animal's own appearance, by behaviorally selecting an optimal background, or by modifying the background to better match the animal's own appearance. Research to date has largely focussed on the first of these mechanisms, whereas there has been little work on the second and almost none on the third. Even though a number of animal species may potentially modify their environment to improve individual‐specific camouflage, this has rarely if ever been quantitatively investigated, or its adaptive value tested. Kittlitz's plovers (Charadrius pecuarius) use material (stones and vegetation) to cover their nests when predators approach, providing concealment that is independent of the inflexible appearance of the adult or eggs, and that can be adjusted to suit the local surrounding background. We used digital imaging and predator vision modeling to investigate the camouflage properties of covered nests, and whether their camouflage affected their survival. The plovers' nest‐covering materials were consistent with a trade‐off between selecting materials that matched the color of the eggs, while resulting in poorer nest pattern and contrast matching to the nest surroundings. Alternatively, the systematic use of materials with high‐contrast and small‐pattern grain sizes could reflect a deliberate disruptive coloration strategy, whereby high‐contrast material breaks up the telltale outline of the clutch. No camouflage variables predicted nest survival. Our study highlights the potential for camouflage to be enhanced by background modification. This provides a flexible system for modifying an animal's conspicuousness, to which the main limitation may be the available materials rather than the animal's appearance.  相似文献   

9.
Camouflage – adaptations that prevent detection and/or recognition – is a key example of evolution by natural selection, making it a primary focus in evolutionary ecology and animal behaviour. Most work has focused on camouflage as an anti‐predator adaptation. However, predators also display specific colours, patterns and behaviours that reduce visual detection or recognition to facilitate predation. To date, very little attention has been given to predatory camouflage strategies. Although many of the same principles of camouflage studied in prey translate to predators, differences between the two groups (in motility, relative size, and control over the time and place of predation attempts) may alter selection pressures for certain visual and behavioural traits. This makes many predatory camouflage techniques unique and rarely documented. Recently, new technologies have emerged that provide a greater opportunity to carry out research on natural predator–prey interactions. Here we review work on the camouflage strategies used by pursuit and ambush predators to evade detection and recognition by prey, as well as looking at how work on prey camouflage can be applied to predators in order to understand how and why specific predatory camouflage strategies may have evolved. We highlight that a shift is needed in camouflage research focus, as this field has comparatively neglected camouflage in predators, and offer suggestions for future work that would help to improve our understanding of camouflage.  相似文献   

10.

Background

Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms.

Results

Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected.

Conclusions

Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.  相似文献   

11.
Cuttlefish are cephalopods capable of rapid camouflage responses to visual stimuli. However, it is not always clear to what these animals are responding. Previous studies have found cuttlefish to be more responsive to lateral stimuli rather than substrate. However, in previous works, the cuttlefish were allowed to settle next to the lateral stimuli. In this study, we examine whether juvenile cuttlefish (Sepia officinalis) respond more strongly to visual stimuli seen on the sides versus the bottom of an experimental aquarium, specifically when the animals are not allowed to be adjacent to the tank walls. We used the Sub Sea Holodeck, a novel aquarium that employs plasma display screens to create a variety of artificial visual environments without disturbing the animals. Once the cuttlefish were acclimated, we compared the variability of camouflage patterns that were elicited from displaying various stimuli on the bottom versus the sides of the Holodeck. To characterize the camouflage patterns, we classified them in terms of uniform, disruptive, and mottled patterning. The elicited camouflage patterns from different bottom stimuli were more variable than those elicited by different side stimuli, suggesting that S. officinalis responds more strongly to the patterns displayed on the bottom than the sides of the tank. We argue that the cuttlefish pay more attention to the bottom of the Holodeck because it is closer and thus more relevant for camouflage.  相似文献   

12.
Camouflage is perhaps the most widespread anti-predator strategy in nature, found in numerous animal groups. A long-standing prediction is that individuals should have camouflage tuned to the visual backgrounds where they live. However, while several studies have demonstrated phenotype–environment associations, few have directly shown that this confers an improvement in camouflage, particularly with respect to predator vision. Here, we show that an intertidal crustacean, the sand flea (Hippa testudinaria), has coloration tuned to the different substrates on which it occurs when viewed by potential avian predators. Individual sand fleas from a small, oceanic island (Ascension) matched the colour and luminance of their own beaches more closely than neighbouring beaches to a model of avian vision. Based on past work, this phenotype–environment matching is likely to be driven through ontogenetic changes rather than genetic adaptation. Our work provides some of the first direct evidence that animal coloration is tuned to provide camouflage to prospective predators against a range of visual backgrounds, in a population of animals occurring over a small geographical range.  相似文献   

13.
Animal camouflage represents one of the most important ways of preventing (or facilitating) predation. It attracted the attention of the earliest evolutionary biologists, and today remains a focus of investigation in areas ranging from evolutionary ecology, animal decision‐making, optimal strategies, visual psychology, computer science, to materials science. Most work focuses on the role of animal morphology per se, and its interactions with the background in affecting detection and recognition. However, the behaviour of organisms is likely to be crucial in affecting camouflage too, through background choice, body orientation and positioning; and strategies of camouflage that require movement. A wealth of potential mechanisms may affect such behaviours, from imprinting and self‐assessment to genetics, and operate at several levels (species, morph, and individual). Over many years there have been numerous studies investigating the role of behaviour in camouflage, but to date, no effort to synthesise these studies and ideas into a coherent framework. Here, we review key work on behaviour and camouflage, highlight the mechanisms involved and implications of behaviour, discuss the importance of this in a changing world, and offer suggestions for addressing the many important gaps in our understanding of this subject.  相似文献   

14.
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions (“bimodal” patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a “sit and hide” strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.  相似文献   

15.
The cuttlefish, Sepia officinalis, provides a fascinating opportunity to investigate the mechanisms of camouflage as it rapidly changes its body patterns in response to the visual environment. We investigated how edge information determines camouflage responses through the use of spatially high-pass filtered 'objects' and of isolated edges. We then investigated how the body pattern responds to objects defined by texture (second-order information) compared with those defined by luminance. We found that (i) edge information alone is sufficient to elicit the body pattern known as Disruptive, which is the camouflage response given when a whole object is present, and furthermore, isolated edges cause the same response; and (ii) cuttlefish can distinguish and respond to objects of the same mean luminance as the background. These observations emphasize the importance of discrete objects (bounded by edges) in the cuttlefish's choice of camouflage, and more generally imply that figure-ground segregation by cuttlefish is similar to that in vertebrates, as might be predicted by their need to produce effective camouflage against vertebrate predators.  相似文献   

16.
Determining how different populations adapt to similar environments is fundamental to understanding the limits of adaptation under changing environments. Snowshoe hares (Lepus americanus) typically molt into white winter coats to remain camouflaged against snow. In some warmer climates, hares have evolved brown winter camouflage—an adaptation that may spread in response to climate change. We used extensive range-wide genomic data to (1) resolve broad patterns of population structure and gene flow and (2) investigate the factors shaping the origins and distribution of winter-brown camouflage variation. In coastal Pacific Northwest (PNW) populations, winter-brown camouflage is known to be determined by a recessive haplotype at the Agouti pigmentation gene. Our phylogeographic analyses revealed deep structure and limited gene flow between PNW and more northern Boreal populations, where winter-brown camouflage is rare along the range edge. Genome sequencing of a winter-brown snowshoe hare from Alaska shows that it lacks the winter-brown PNW haplotype, reflecting a history of convergent phenotypic evolution. However, the PNW haplotype does occur at low frequency in a winter-white population from Montana, consistent with the spread of a locally deleterious recessive variant that is masked from selection when rare. Simulations of this population further show that this masking effect would greatly slow the selective increase of the winter-brown Agouti allele should it suddenly become beneficial (e.g., owing to dramatic declines in snow cover). Our findings underscore how allelic dominance can shape the geographic extent and rate of convergent adaptation in response to rapidly changing environments.  相似文献   

17.
To explain the surprisingly high frequency of congenital red-green colour blindness, the suggestion has been made that dichromats might be at an advantage in breaking certain kinds of colour camouflage. We have compared the performance of dichromats and normal observers in a task in which texture is camouflaged by colour. The texture elements in a target area differed in either orientation or size from the background elements. In one condition, the texture elements were all of the same colour; in the camouflage condition they were randomly coloured red or green. For trichromats, it proved to be more difficult to detect the target region in the camouflage condition, even though colour was completely irrelevant to the task. Dichromats (n = 7) did not show this effect, and indeed performed better than trichromats in the camouflage condition. We conclude that colour can interfere with segregation based upon texture, and that dichromats are less susceptible to such interference.  相似文献   

18.
Rañó I 《Biological cybernetics》2012,106(4-5):261-270
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.  相似文献   

19.
Previous examinations of search under camouflage conditions have reported that performance improves with training and that training can engender near perfect transfer to similar, but novel camouflage-type displays [1]. What remains unclear, however, are the cognitive mechanisms underlying these training improvements and transfer benefits. On the one hand, improvements and transfer benefits might be associated with higher-level overt strategy shifts, such as through the restriction of eye movements to target-likely (background) display regions. On the other hand, improvements and benefits might be related to the tuning of lower-level perceptual processes, such as figure-ground segregation. To decouple these competing possibilities we had one group of participants train on camouflage search displays and a control group train on non-camouflage displays. Critically, search displays were rapidly presented, precluding eye movements. Before and following training, all participants completed transfer sessions in which they searched novel displays. We found that search performance on camouflage displays improved with training. Furthermore, participants who trained on camouflage displays suffered no performance costs when searching novel displays following training. Our findings suggest that training to break camouflage is related to the tuning of perceptual mechanisms and not strategic shifts in overt attention.  相似文献   

20.
Cuttlefish change their appearance rapidly for camouflage on different backgrounds. Effective camouflage for a benthic organism such as cuttlefish must deceive predators viewing from above as well as from the side, thus the choice of camouflage skin pattern is expected to account for horizontal and vertical background information. Previous experiments dealt only with the former, and here we explore some influences of background patterns oriented vertically in the visual background. Two experiments were conducted: (1) to determine whether cuttlefish cue visually on vertical background information; and (2) if a visual cue presented singly (either horizontally or vertically) is less, equally or more influential than a visual cue presented both horizontally and vertically. Combinations of uniform and checkerboard backgrounds (either on the bottom or wall) evoked disruptive coloration in all cases, implying that high-contrast, non-uniform backgrounds are responded to with priority over uniform backgrounds. However, there were differences in the expression of disruptive components if the checkerboard was presented simultaneously on the bottom and wall, or solely on the wall or the bottom. These results demonstrate that cuttlefish respond to visual background stimuli both in the horizontal and vertical plane, a finding that supports field observations of cuttlefish and octopus camouflage. Both A. Barbosa and L. Litman are first authors. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号