共查询到20条相似文献,搜索用时 0 毫秒
1.
Gur E Vishkautzan M Sauer RT 《Protein science : a publication of the Protein Society》2012,21(2):268-278
AAA+ proteases employ a hexameric ring that harnesses the energy of ATP binding and hydrolysis to unfold native substrates and translocate the unfolded polypeptide into an interior compartment for degradation. What determines the ability of different AAA+ enzymes to unfold and thus degrade different native protein substrates is currently uncertain. Here, we explore the ability of the E. coli Lon protease to unfold and degrade model protein substrates beginning at N-terminal, C-terminal, or internal degrons. Lon has historically been viewed as a weak unfoldase, but we demonstrate robust and processive unfolding/degradation of some substrates with very stable protein domains, including mDHFR and titin(I27) . For some native substrates, Lon is a more active unfoldase than related AAA+ proteases, including ClpXP and ClpAP. For other substrates, this relationship is reversed. Thus, unfolding activity does not appear to be an intrinsic enzymatic property. Instead, it depends on the specific protease and substrate, suggesting that evolution has diversified rather than optimized the protein unfolding activities of different AAA+ proteases. 相似文献
2.
Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in Vmax. By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease. 相似文献
3.
Kevin?A. Strauss Robert?N. Jinks Erik?G. Puffenberger Sundararajan Venkatesh Kamalendra Singh Iteen Cheng Natalie Mikita Jayapalraja Thilagavathi Jae Lee Stefan Sarafianos Abigail Benkert Alanna Koehler Anni Zhu Victoria Trovillion Madeleine McGlincy Thierry Morlet Matthew Deardorff A.?Micheil Innes Chitra Prasad Albert?E. Chudley Irene?Nga?Wing Lee Carolyn?K. Suzuki 《American journal of human genetics》2015,96(1):121-135
CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA+ domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease. 相似文献
4.
The repair of DNA double-strand breaks by homologous recombination is of crucial importance for maintaining genomic stability. Two major players during this repair pathway are Rad51 and Rad54. Previously, it was shown that Rad54 exists as a monomer or oligomer when bound to DNA and drives the displacement of Rad51 by translocating along the DNA. Moreover, phosphorylation of Rad54 was reported to stimulate this clearance of Rad51 from DNA. However, it is currently unclear how phosphorylation of Rad54 modulates its molecular-structural function and how it affects the activity of monomeric or oligomeric Rad54 during the removal of Rad51. To examine the impact of Rad54 phosphorylation on a molecular-structural level, we applied molecular dynamics simulations of Rad54 monomers and hexamers in the absence or presence of DNA. Our results suggest that 1) phosphorylation of Rad54 stabilizes the monomeric form by reducing the interlobe movement of Rad54 monomers and might therefore facilitate multimer formation around DNA and 2) phosphorylation of Rad54 in a higher-order hexamer reduces its binding strength to DNA, which is a requirement for efficient mobility on DNA. To further address the relationship between the mobility of Rad54 and its phosphorylation state, we performed fluorescence recovery after photobleaching experiments in living cells, which expressed different versions of the Rad54 protein. Here, we could measure that the phosphomimetic version of Rad54 was highly mobile on DNA, whereas a nonphosphorylatable mutant displayed a mobility defect. Taken together, these data show that the phosphorylation of Rad54 is a critical event in balancing the DNA binding strength and mobility of Rad54 and might therefore provide optimal conditions for DNA translocation and subsequent removal of Rad51 during homologous recombination repair. 相似文献
5.
Shanshan Li Kan-Yen Hsieh Shih-Chieh Su Grigore D. Pintilie Kaiming Zhang Chung-I Chang 《The Journal of biological chemistry》2021,297(4)
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding. 相似文献
6.
Martine Ruer Georg Krainer Philip Gröger Michael Schlierf 《Journal of molecular biology》2018,430(22):4592-4602
AAA+ proteases are essential players in cellular pathways of protein degradation. Elucidating their conformational behavior is key for understanding their reaction mechanism and, importantly, for elaborating our understanding of mutation-induced protease deficiencies. Here, we study the structural dynamics of the Thermotoga maritima AAA+ hexameric ring metalloprotease FtsH (TmFtsH). Using a single-molecule Förster resonance energy transfer approach to monitor ATPase and protease inter-domain conformational changes in real time, we show that TmFtsH—even in the absence of nucleotide—is a highly dynamic protease undergoing sequential transitions between five states on the second timescale. Addition of ATP does not influence the number of states or change the timescale of domain motions but affects the state occupancy distribution leading to an inter-domain compaction. These findings suggest that thermal energy, but not chemical energy, provides the major driving force for conformational switching, while ATP, through a state reequilibration, introduces directionality into this process. The TmFtsH A359V mutation, a homolog of the human pathogenic A510V mutation of paraplegin (SPG7) causing hereditary spastic paraplegia, does not affect the dynamic behavior of the protease but impairs the ATP-coupled domain compaction and, thus, may account for protease malfunctioning and pathogenesis in hereditary spastic paraplegia. 相似文献
7.
Breann L. Brown Ellen F. Vieux Tejas Kalastavadi SaRa Kim James Z. Chen Tania A. Baker 《Protein science : a publication of the Protein Society》2019,28(7):1239-1251
Abstract: The protein quality control network (pQC) plays critical roles in maintaining protein and cellular homeostasis, especially during stress. Lon is a major pQC AAA+ protease, conserved from bacteria to human mitochondria. It is the principal enzyme that degrades most unfolded or damaged proteins. Degradation by Lon also controls cellular levels of several key regulatory proteins. Recently, our group determined that Escherichia coli Lon, previously thought to be an obligate homo‐hexamer, also forms a dodecamer. This larger assembly has decreased ATPase activity and displays substrate‐specific alterations in degradation compared with the hexamer. Here we experimentally probe the physical hexamer–hexamer interactions and the biological roles of the Lon dodecamer. Using structure prediction methods coupled with mutagenesis, we identified a key interface and specific residues within the Lon N domain that participates in an intermolecular coiled coil unique to the dodecamer. With this knowledge, we made a Lon variant (LonVQ) that forms a dodecamer with increased stability, as determined by analytical ultracentrifugation and electron microscopy. Using this altered Lon, we characterize the Lon dodecamer's activities using a panel of substrates. Lon dodecamers are clearly functional, and complement critical lon‐ phenotypes but also exhibit altered substrate specificity. For example, the small heat shock proteins IbpA and IbpB are only efficiently degraded well by the hexamer. Thus, by elucidating the intermolecular contacts connecting the hexamers, we are starting to illuminate how dodecamer formation versus disassembly can alter Lon function under conditions where controlling specific activities and substrate preferences of this key protease may be advantageous. 相似文献
8.
9.
Jun Fan Hee-Bum Kang Changliang Shan Shannon Elf Ruiting Lin Jianxin Xie Ting-Lei Gu Mike Aguiar Scott Lonning Tae-Wook Chung Martha Arellano Hanna J. Khoury Dong M. Shin Fadlo R. Khuri Titus J. Boggon Sumin Kang Jing Chen 《The Journal of biological chemistry》2014,289(38):26533-26541
The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect. 相似文献
10.
11.
ATP依赖的人Lon蛋白酶是一种同质寡聚、环状的蛋白酶,主要位于细胞线粒体基质中。许多研究表明,Lon蛋白酶对于维护细胞的内环境稳定起着重要作用,并参与线粒体蛋白质量控制和代谢调控。将pPROEX1 His6-Lon重组质粒在Escherichia coli Rosetta 2菌株中诱导表达用Ni2+柱亲和层析法纯化,获得纯度较高的目的蛋白。经纯化后,Lon蛋白酶的比酶活达到0.17 U/mg。通过多肽底物Rhodamine 110、bis-(CBZ-L-alanyl-L-alanine amide)[(Z-AA)2 Rh110]的降解检测显示,Lon蛋白酶具有肽酶活性,并被ATP所刺激。Casein和线粒体转录因子A降解实验表明,纯化的Lon蛋白酶具有蛋白水解活性,而且蛋白水解活性依赖于ATP。 相似文献
12.
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed. 相似文献
13.
Karl E. Duderstadt James M. Berger 《Critical reviews in biochemistry and molecular biology》2013,48(3):163-187
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed. 相似文献
14.
Kalyan?C. Vinnakota Abhishek Singhal Fran?oise Van?den?Bergh Masoumeh Bagher-Oskouei Robert?W. Wiseman Daniel?A. Beard 《Biophysical journal》2016,110(4):954-961
In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria. 相似文献
15.
K Iijima-Ando M Sekiya A Maruko-Otake Y Ohtake E Suzuki B Lu KM Iijima 《PLoS genetics》2012,8(8):e1002918
Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi-mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD-related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. 相似文献
16.
Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell‐division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross‐linking and scanning for mutations that prevent sul20‐peptide binding. These N‐domain mutations limit the rates of proteolysis of model sul20‐tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon‐mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP‐dependent biological activities do not require translocation. 相似文献
17.
Botos I Melnikov EE Cherry S Khalatova AG Rasulova FS Tropea JE Maurizi MR Rotanova TV Gustchina A Wlodawer A 《Journal of structural biology》2004,146(1-2):113-122
The crystal structure of the small, mostly helical alpha domain of the AAA+ module of the Escherichia coli ATP-dependent protease Lon has been solved by single isomorphous replacement combined with anomalous scattering and refined at 1.9A resolution to a crystallographic R factor of 17.9%. This domain, comprising residues 491-584, was obtained by chymotrypsin digestion of the recombinant full-length protease. The alpha domain of Lon contains four alpha helices and two parallel strands and resembles similar domains found in a variety of ATPases and helicases, including the oligomeric proteases HslVU and ClpAP. The highly conserved "sensor-2" Arg residue is located at the beginning of the third helix. Detailed comparison with the structures of 11 similar domains established the putative location of the nucleotide-binding site in this first fragment of Lon for which a crystal structure has become available. 相似文献
18.
19.
着色性干皮病F蛋白 (xeroderma pigmentosum group F, XPF) 和切除修复交叉互补组1蛋白 (excision repair cross complementing group 1, ERCC1) 组成一种结构特异性的核酸内切酶 (XPF-ERCC1)复合物,参与DNA链间交联 (interstrand crosslink, ICL) 损伤修复。其中,XPF蛋白的去泛素化修饰对DNA损伤修复的影响尚未见报道。本工作主要研究泛素特异性蛋白酶15 (ubiquitin-specific protease 15, USP15) 对XPF的稳定性及ICL修复的影响。本研究通过蛋白质质谱和Western印迹法分析发现,XPF蛋白与USP15存在相互作用,进而使XPF蛋白去泛素化修饰;采用CRISPR-Cas9技术构建USP15基因敲除的HeLa细胞株 (USP15 KO) 并进行Western印迹分析,结果显示,敲除组XPF蛋白水平低于对照组 (P<0.001)。克隆形成试验显示,在ICL诱导剂顺铂 (cisplatin,DDP) 和丝裂霉素C (mitomycin, MMC) 的作用下,USP15基因敲除的HeLa细胞增殖能力显著降低 (P<0.01)。本研究表明,去泛素化酶USP15是一种重要的DNA修复调节因子,该酶通过稳定XPF蛋白促进由XPF-ERCC1介导的ICL修复。本研究为改善ICL诱导剂类抗癌药物的耐药性提供了理论依据,并为肿瘤的治疗提供了潜在的新靶点。 相似文献
20.
Efficiency of the pTF-FC2 pas Poison-Antidote Stability System in Escherichia coli Is Affected by the Host Strain, and Antidote Degradation Requires the Lon Protease 下载免费PDF全文
The stabilization of a test plasmid by the proteic, poison-antidote plasmid addiction system (pas) of plasmid pTF-FC2 was host strain dependent, with a 100-fold increase in stability in Escherichia coli CSH50, a 2.5-fold increase in E. coli JM105, and no detectable stabilization in E. coli strains JM107 and JM109. The lethality of the PasB toxin was far higher in the E. coli strains in which the pas was most effective. Models for the way in which poison-antidote systems stabilize plasmids require that the antidote have a much higher rate of turnover than that of the toxin. A decrease in host cell death following plasmid loss from an E. coli lon mutant and a decrease in plasmid stability suggested that the Lon protease plays a role in the rate of turnover of PasA antidote. 相似文献