首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
Receptor protein tyrosine phosphatase α (RPTPα) is the mitotic activator of the protein tyrosine kinase Src. RPTPα serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPα Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPα pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPα, and intrinsic catalytic activity of RPTPα was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPα was induced in mitosis. GRB2 binding to RPTPα, which was proposed to compete with Src binding to RPTPα, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPα-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPα, illustrating that Src binding to RPTPα is not mediated by a pTyr-SH2 interaction. Mutation of RPTPα Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPα pSer204 facilitates Src binding, leading to RPTPα-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.Protein tyrosine phosphatases (PTPs) are responsible for dephosphorylation of the phosphotyrosyl residues. The human genome contains approximately 100 genes that encode members of the four PTP families, and most of them have mouse orthologues (2, 48). According to their subcellular localization, the classical PTPs, encoded by less than half of the total PTP genes, are divided into two subfamilies: cytoplasmic and receptor protein tyrosine phosphatases (RPTPs). The majority of the RPTPs contain, besides a variable extracellular domain and a transmembrane domain, two highly homologous phosphatase domains (27), with the membrane-proximal domain comprising most of the catalytic activity (33).RPTPα is a typical RPTP with a small, highly glycosylated extracellular domain (13). RPTPα function is regulated by many mechanisms, including proteolysis (18), oxidation (55), dimerization (7, 23, 24, 47, 52), and phosphorylation of serine and tyrosine residues (16, 17, 49). RPTPα is broadly expressed in many cell types, and over the years, RPTPα has been shown to be involved in a number of signaling mechanisms, including neuronal (15) and skeletal muscle (34) cell differentiation, neurite elongation (8, 9, 56), insulin receptor signaling downregulation (3, 28, 30, 31, 35), insulin secretion (25), activation of voltage-gated potassium channel Kv1.2 (51), long-term potentiation in hippocampal neurons (32, 38), matrix-dependent force transduction (53), and cell spreading and migration (21, 45, 57).The majority of the roles played in these cellular processes involve RPTPα''s ability to activate the proto-oncogenes Src and Fyn by dephosphorylating their C-terminal inhibitory phosphotyrosine (5, 15, 39, 45, 61). Normally, this phosphotyrosine (pTyr527 in chicken Src) binds to the Src homology 2 (SH2) domain, keeping the protein in an inactive closed conformation. A displacement mechanism was proposed for RPTPα-mediated Src activation in which pTyr789 of RPTPα is required to bind the SH2 domain of Src before RPTPα dephosphorylates Tyr527 (58). This model is the subject of debate since other studies show that RPTPα lacking Tyr789 is still able to dephosphorylate and activate Src (12, 26, 29, 56). In normal cells, Src reaches its activation peak during mitosis (4, 11, 40, 42), and with the help of overexpressing cells, it was shown that this activation is triggered mainly by RPTPα. The model that emerged is that RPTPα is activated in mitosis due to serine hyperphosphorylation and detaches from the GRB2 scaffolding protein (59, 60) that normally binds most of the pTyr789 of RPTPα via its SH2 domain (14, 17, 46). Two serine phosphorylation sites were mapped in the juxtamembrane domain of RPTPα, Ser180 and Ser204 (49). The kinases that were found responsible for their phosphorylation were protein kinase C delta (PKCdelta) (10) and CaMKIIalpha (9), but there is no clear evidence that these kinases are activated in mitosis. We set out to investigate the role of serine phosphorylation of RPTPα in mitotic activation of Src.We generated phosphospecific antibodies and show that RPTPα pSer204, but not pSer180, is dephosphorylated in mitotic NIH 3T3 and HeLa cells, concomitantly with activation of Src. Selective inhibitors suggested that PP2A was the phosphatase that dephosphorylated pSer204. RNA interference (RNAi)-mediated knockdown of the catalytic subunit of PP2A demonstrated that indeed PP2A was responsible for mitotic dephosphorylation of RPTPα pSer204. It is noteworthy that PP2A is known to be activated in mitosis. Intrinsic PTP activities of RPTPα were similar in unsynchronized and mitotic cells, and mutation of Ser204 did not activate RPTPα in in vitro PTP assays. Yet, Src binding to RPTPα was induced in mitotic NIH 3T3 cells and RPTPα-S204D with a phosphomimicking mutation at Ser204 coimmunoprecipitated less efficiently with Src. Based on our results, we propose a mechanism for mitotic activation of Src that is triggered by dephosphorylation of RPTPα pSer204, resulting in enhanced affinity for Src and subsequent dephosphorylation and activation of Src.  相似文献   

3.
4.
5.
6.
Receptors (FcγRs) for the constant region of immunoglobulin G (IgG) are an important link between humoral immunity and cellular immunity. To help define the role of FcγRs in determining the fate of human immunodeficiency virus type 1 (HIV-1) immune complexes, cDNAs for the four major human Fcγ receptors (FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa) were stably expressed by lentiviral transduction in a cell line (TZM-bl) commonly used for standardized assessments of HIV-1 neutralization. Individual cell lines, each expressing a different FcγR, bound human IgG, as evidence that the physical properties of the receptors were preserved. In assays with a HIV-1 multisubtype panel, the neutralizing activities of two monoclonal antibodies (2F5 and 4E10) that target the membrane-proximal external region (MPER) of gp41 were potentiated by FcγRI and, to a lesser extent, by FcγRIIb. Moreover, the neutralizing activity of an HIV-1-positive plasma sample known to contain gp41 MPER-specific antibodies was potentiated by FcγRI. The neutralizing activities of monoclonal antibodies b12 and 2G12 and other HIV-1-positive plasma samples were rarely affected by any of the four FcγRs. Effects with gp41 MPER-specific antibodies were moderately stronger for IgG1 than for IgG3 and were ineffective for Fab. We conclude that FcγRI and FcγRIIb facilitate antibody-mediated neutralization of HIV-1 by a mechanism that is dependent on the Fc region, IgG subclass, and epitope specificity of antibody. The FcγR effects seen here suggests that the MPER of gp41 could have greater value for vaccines than previously recognized.Fc receptors (FcRs) are differentially expressed on a variety of cells of hematopoietic lineage, where they bind the constant region of antibody (Ab) and provide a link between humoral and cellular immunity. Humans possess two classes of FcRs for the constant region of IgG (FcγRs) that, when cross-linked, are distinguished by their ability to either activate or inhibit cell signaling (69, 77, 79). The activating receptors FcγRI (CD64), FcγRIIa (CD32), and FcγRIII (CD16) signal through an immunoreceptor tyrosine-based activation motif (ITAM), whereas FcγRIIb (CD32) contains an inhibitory motif (ITIM) that counters ITAM signals and B-cell receptor signals. It has been suggested that a balance between activating and inhibitory FcγRs coexpressed on the same cells plays an important role in regulating adaptive immunity (23, 68). Moreover, the inhibitory FcγRIIb, being the sole FcγR on B cells, appears to play an important role in regulating self-tolerance (23, 68). The biologic role of FcγRs may be further influenced by differences in their affinity for immunoglobulin G (IgG); thus, FcγRI is a high-affinity receptor that binds monomeric IgG (mIgG) and IgG immune complexes (IC), whereas FcγRIIa, FcγRIIb, and FcγRIIIa are medium- to low-affinity receptors that preferentially bind IgG IC (10, 49, 78). FcγRs also exhibit differences in their relative affinity for the four IgG subclasses (10), which has been suggested to influence the balance between activating and inhibitory FcγRs (67).In addition to their participation in acquired immunity, FcγRs can mediate several innate immune functions, including phagocytosis of opsonized pathogens, Ab-dependent cell cytotoxicity (ADCC), antigen uptake by professional antigen-presenting cells, and the production of inflammatory cytokines and chemokines (26, 35, 41, 48, 69). In some cases, interaction of Ab-coated viruses with FcγRs may be exploited by viruses as a means to facilitate entry into FcγR-expressing cells (2, 33, 47, 84). Several groups have reported FcγR-mediated Ab-dependent enhancement (ADE) of HIV-1 infection in vitro (47, 51, 58, 63, 94, 96), whereas other reports have implicated FcγRs in efficient inhibition of the virus in vitro (19, 21, 29, 44-46, 62, 98) and possibly as having beneficial effects against HIV-1 in vivo (5, 27, 28, 42). These conflicting results are further complicated by the fact that HIV-1-susceptible cells, such as monocytes and macrophages, can coexpress more than one FcγR (66, 77, 79).HIV-1 entry requires sequential interactions between the viral surface glycoprotein, gp120, and its cellular receptor (CD4) and coreceptor (usually CCR5 or CXCR4), followed by membrane fusion that is mediated by the viral transmembrane glycoprotein gp41 (17, 106). Abs neutralize the virus by binding either gp120 or gp41 and blocking entry into cells. Several human monoclonal Abs that neutralize a broad spectrum of HIV-1 variants have attracted considerable interest for vaccine design. Epitopes for these monoclonal Abs include the receptor binding domain of gp120 in the case of b12 (71, 86), a glycan-specific epitope on gp120 in the case of 2G12 (13, 85, 86), and two adjacent epitopes in the membrane-proximal external region (MPER) of g41 in the cases of 2F5 and 4E10 (3, 11, 38, 93). At least three of these monoclonal Abs have been shown to interact with FcRs and to mediate ADCC (42, 43).A highly standardized and validated assay for neutralizing Abs against HIV-1 that quantifies reductions in luciferase (Luc) reporter gene expression after a single round of virus infection in TZM-bl cells has been developed (60, 104). TZM-bl (also called JC53BL-13) is a CXCR4-positive HeLa cell line that was engineered to express CD4 and CCR5 and to contain integrated reporter genes for firefly Luc and Escherichia coli β-galactosidase under the control of the HIV-1 Tat-regulated promoter in the long terminal repeat terminal repeat sequence (74, 103). TZM-bl cells are permissive to infection by a wide variety of HIV-1, simian immunodeficiency virus, and human-simian immunodeficiency virus strains, including molecularly cloned Env-pseudotyped viruses. Here we report the creation and characterization of four new TZM-bl cell lines, each expressing one of the major human FcγRs. These new cell lines were used to gain a better understanding of the individual roles that FcγRs play in determining the fate of HIV-1 IC. Two FcγRs that potentiated the neutralizing activity of gp41 MPER-specific Abs were identified.  相似文献   

7.
8.
9.
10.
Andes virus (ANDV) causes a fatal hantavirus pulmonary syndrome (HPS) in humans and Syrian hamsters. Human αvβ3 integrins are receptors for several pathogenic hantaviruses, and the function of αvβ3 integrins on endothelial cells suggests a role for αvβ3 in hantavirus directed vascular permeability. We determined here that ANDV infection of human endothelial cells or Syrian hamster-derived BHK-21 cells was selectively inhibited by the high-affinity αvβ3 integrin ligand vitronectin and by antibodies to αvβ3 integrins. Further, antibodies to the β3 integrin PSI domain, as well as PSI domain polypeptides derived from human and Syrian hamster β3 subunits, but not murine or bovine β3, inhibited ANDV infection of both BHK-21 and human endothelial cells. These findings suggest that ANDV interacts with β3 subunits through PSI domain residues conserved in both Syrian hamster and human β3 integrins. Sequencing the Syrian hamster β3 integrin PSI domain revealed eight differences between Syrian hamster and human β3 integrins. Analysis of residues within the PSI domains of human, Syrian hamster, murine, and bovine β3 integrins identified unique proline substitutions at residues 32 and 33 of murine and bovine PSI domains that could determine ANDV recognition. Mutagenizing the human β3 PSI domain to contain the L33P substitution present in bovine β3 integrin abolished the ability of the PSI domain to inhibit ANDV infectivity. Conversely, mutagenizing either the bovine PSI domain, P33L, or the murine PSI domain, S32P, to the residue present human β3 permitted PSI mutants to inhibit ANDV infection. Similarly, CHO cells transfected with the full-length bovine β3 integrin containing the P33L mutation permitted infection by ANDV. These findings indicate that human and Syrian hamster αvβ3 integrins are key receptors for ANDV and that specific residues within the β3 integrin PSI domain are required for ANDV infection. Since L33P is a naturally occurring human β3 polymorphism, these findings further suggest the importance of specific β3 integrin residues in hantavirus infection. These findings rationalize determining the role of β3 integrins in hantavirus pathogenesis in the Syrian hamster model.Hantaviruses persistently infect specific small mammal hosts and are spread to humans by the inhalation of aerosolized excreted virus (41, 42). Hantaviruses predominantly infect endothelial cells and cause one of two vascular leak-based diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (41). Hantavirus diseases are characterized by increased vascular permeability and acute thrombocytopenia in the absence of endothelial cell lysis (36, 41, 42, 54). In general, hantaviruses are not spread from person to person; however, the Andes hantavirus (ANDV) is an exception, since there are several reports of person-to-person transmission of ANDV infection (11, 37, 47, 52). ANDV is also unique in its ability to cause an HPS-like disease in Syrian hamsters and serves as the best-characterized hantavirus disease model with a long onset, symptoms, and pathogenesis nearly identical to that of HPS patients (20, 21, 50).Hantavirus infection of the endothelium alters endothelial cell barrier functions through direct and immunological responses (8, 14). Although the means by which hantaviruses cause pulmonary edema or hemorrhagic disease has been widely conjectured, the mechanisms by which hantaviruses elicit pathogenic human responses have yet to be defined. Hantaviruses coat the surface of infected VeroE6 cells days after infection (17), and this further suggests that dynamic hantavirus interactions with immune and endothelial cells are likely to contribute to viral pathogenesis. Hantavirus pathogenesis has been suggested to involve CD8+ T cells, tumor necrosis factor alpha or other cytokines, viremia, and the dysregulation of β3 integrins (7, 8, 13-16, 25-28, 32, 34, 38, 44-46). However, these responses have not been demonstrated to contribute to hantavirus pathogenesis, and in some cases there are conflicting data on their involvement (18, 25-28, 34, 35, 44, 45, 48). Immune complex deposition clearly contributes to HFRS patient disease and renal sequelae (4, 7), but it is unclear what triggers vascular permeability in HPS and HFRS diseases or why hemorrhage occurs in HFRS patients but not in HPS patients (8, 36, 54). Acute thrombocytopenia is common to both diseases, and platelet dysfunction resulting from defective platelet aggregation is reported in HFRS patients (7, 8).Pathogenic hantaviruses have in common their ability to interact with αIIbβ3 and αvβ3 integrins present on platelets and endothelial cells (13, 16), and β3 integrins have primary roles in regulating vascular integrity (1, 2, 6, 19, 22, 39, 40). Consistent with the presence of cell surface displayed virus (17), pathogenic hantaviruses uniquely block αvβ3 directed endothelial cell migration and enhance endothelial cell permeability for 3 to 5 days postinfection (14, 15). Pathogenic hantaviruses dysregulate β3 integrin functions by binding domains present at the apex of inactive β3 integrin conformers (38). αvβ3 forms a complex with vascular endothelial cell growth factor receptor 2 (VEGFR2) and normally regulates VEGF-directed endothelial cell permeability (2, 3, 10, 39, 40). However, both β3 integrin knockouts and hantavirus-infected endothelial cells result in increased VEGF-induced permeability, presumably by disrupting VEGFR2-β3 integrin complex formation (2, 14, 19, 39, 40). This suggests that at least one means for hantaviruses to increase vascular permeability occurs through interactions with β3 integrins that are required for normal platelet and endothelial cell functions.αvβ3 and αIIbβ3 integrins exist in two conformations: an active extended conformation where the ligand binding head domain is present at the apex of the heterodimer and a basal, inactive bent conformation where the globular head of the integrin is folded toward the cell membrane (30, 53, 55). Pathogenic HTN and NY-1 hantaviruses bind to the N-terminal plexin-semaphorin-integrin (PSI) domain of β3 integrin subunits and are selective for bent, inactive αvβ3 integrin conformers (38). Pathogenic hantavirus binding to inactive αvβ3 integrins is consistent with the selective inhibitory effect of hantaviruses on αvβ3 function and endothelial cell permeability (14, 15, 38). Although the mechanism of hantavirus induced vascular permeability has yet to be defined, there is a clear role for β3 integrin dysfunction in vascular permeability deficits (5, 6, 22, 29, 39, 40, 51) which make an understanding of hantavirus interactions with β3 subunits important for both entry and disease processes.The similarity between HPS disease in humans and Syrian hamsters (20, 21) suggests that pathogenic mechanisms of ANDV disease are likely to be coincident. Curiously, other hantaviruses (Sin Nombre virus [SNV] and Hantaan virus [HTNV]) are restricted in Syrian hamsters and fail to cause disease in this animal, even though they are prominent causes of human disease (50). Although the host range restriction for SNV and HTNV in Syrian hamsters has not been defined (33), the pathogenesis of ANDV in Syrian hamsters suggests that both human and Syrian hamster β3 integrins may similarly be used by ANDV and contribute to pathogenesis.We demonstrate here that ANDV infection of the Syrian hamster BHK-21 cell line and human endothelial cells is dependent on αvβ3 and inhibited by αvβ3 specific ligands and antibodies. Further, polypeptides expressing the N-terminal 53 residues of human and Syrian hamster β3 subunits block ANDV infection. This further indicates that ANDV interaction with the N-terminal 53 residues of both human and Syrian hamster β3 integrins is required for viral entry. We also demonstrate that ANDV recognition of human and Syrian hamster β3 integrins is determined by proline substitutions at residues 32/33 within the β3 integrin PSI domain. These results define unique ANDV interactions with human and Syrian hamster β3 integrins.  相似文献   

11.
12.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

13.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   

14.
15.
A critical function of the human immunodeficiency virus type 1 Nef protein is the downregulation of CD4 from the surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to the endocytic machinery, thereby increasing the rate of CD4 internalization. In support of this model, weak binary interactions between CD4, Nef, and the endocytic adaptor complex, AP-2, have been reported. In particular, dileucine and diacidic motifs in the C-terminal flexible loop of Nef have been shown to mediate binding to a combination of the α and σ2 subunits of AP-2. Here, we report the identification of a potential binding site for the Nef diacidic motif on α-adaptin. This site comprises two basic residues, lysine-297 and arginine-340, on the α-adaptin trunk domain. The mutation of these residues specifically inhibits the ability of Nef to bind AP-2 and downregulate CD4. We also present evidence that the diacidic motif on Nef and the basic patch on α-adaptin are both required for the cooperative assembly of a CD4-Nef-AP-2 complex. This cooperativity explains how Nef is able to efficiently downregulate CD4 despite weak binary interactions between components of the tripartite complex.CD4, a type I transmembrane glycoprotein that serves as a coreceptor for major histocompatibility complex class II (MHC-II) molecules, is expressed on the surfaces of helper T lymphocytes and cells of the monocyte/macrophage lineage (8). Primate immunodeficiency viruses gain access to these cells by virtue of the interaction of the viral envelope glycoprotein (Env) with a combination of CD4 and a chemokine receptor (63). This interaction causes a conformational change within the Env protein that promotes the fusion of the viral envelope with the plasma membrane. Upon the delivery of the viral genetic material into the cytoplasm of the host cells, one of the first virally encoded proteins to be expressed is Nef, an accessory factor that modulates specific signal transduction and protein-trafficking pathways in a manner that optimizes the intracellular environment for viral replication (reviewed in references 21, 39, and 65). Perhaps the best characterized function of Nef is the downregulation of CD4 from the surfaces of the host cells (6, 22, 29, 45). CD4 downregulation prevents superinfection (6, 41) and enhances virion release (19, 38, 48, 66, 76), thereby contributing to the establishment of a robust infective state (24, 72).The mechanism used by the Nef protein of human immunodeficiency virus type 1 (HIV-1) to downregulate CD4 has been the subject of extensive study, but only recently have the molecular details of this process begun to be unraveled. It is generally acknowledged that HIV-1 Nef accelerates the internalization of CD4 from the plasma membrane by linking the cytosolic tail of the receptor to the clathrin-associated endocytic machinery (1, 12, 20, 34, 40, 64). In support of this model, a hydrophobic pocket comprising W57 and L58 on the folded core domain of Nef binds with millimolar affinity to the cytosolic tail of CD4 (28) (all residues and numbers correspond to the NL4-3 variant of HIV-1 Nef used in this study). In addition, a dileucine motif (ENTSLL, residues 160 to 165) (10, 16, 26) and a diacidic motif (D174 and D175) (2) on the C-terminal flexible loop of Nef mediate an interaction of micromolar affinity with the clathrin-associated, heterotetrameric (α-β2-μ2-σ2) adaptor protein 2 (AP-2) complex (12, 20, 40, 49). These interactions draw CD4 into clathrin-coated pits that eventually bud inwards as clathrin-coated vesicles (11, 27). Internalized CD4 is subsequently delivered to endosomes and then to lysosomes for degradation (3, 23, 59, 64).Despite progress in the understanding of the mechanism of Nef-induced CD4 downregulation, several important aspects remain to be elucidated. Previous studies have shown that the Nef dileucine and diacidic motifs interact with a combination of the α and σ2 subunits of AP-2 (referred to as the α-σ2 hemicomplex) (12, 20, 40, 49), but the precise location of the Nef binding sites is unknown. It also remains to be determined whether Nef can actually bind CD4 and AP-2 at the same time. Indeed, the formation of a tripartite CD4-Nef-AP-2 complex in which Nef links the cytosolic tail of CD4 to AP-2 has long been hypothesized but has never been demonstrated experimentally. Given the relatively weak affinity of Nef for the CD4 tail (28) and AP-2 (12, 40), it is unclear how such a complex could assemble and function in CD4 downregulation.In this study, we have addressed these issues by using a combination of yeast hybrid, in vitro binding, and in vivo CD4 downregulation assays. We report the identification of a candidate binding site for the Nef diacidic motif on the AP-2 complex. This site, a basic patch comprising K297 and R340 on α-adaptin, is specifically required for Nef binding and Nef-induced CD4 downregulation. We also show that the Nef diacidic motif and the α-adaptin basic patch are required for the cooperative assembly of a tripartite complex composed of the CD4 cytosolic tail, Nef, and the α-σ2 hemicomplex. The cooperative manner in which this complex is formed explains how Nef is able to efficiently downregulate CD4 from the plasma membrane despite weak binary interactions between the components of this complex.  相似文献   

16.
17.
The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. While mTOR complex 1 (mTORC1) regulates mRNA translation and ribosome biogenesis, mTORC2 plays an important role in the phosphorylation and subsequent activation of Akt. Interestingly, mTORC1 negatively regulates Akt activation, but whether mTORC1 signaling directly targets mTORC2 remains unknown. Here we show that growth factors promote the phosphorylation of Rictor (rapamycin-insensitive companion of mTOR), an essential subunit of mTORC2. We found that Rictor phosphorylation requires mTORC1 activity and, more specifically, the p70 ribosomal S6 kinase 1 (S6K1). We identified several phosphorylation sites in Rictor and found that Thr1135 is directly phosphorylated by S6K1 in vitro and in vivo, in a rapamycin-sensitive manner. Phosphorylation of Rictor on Thr1135 did not affect mTORC2 assembly, kinase activity, or cellular localization. However, cells expressing a Rictor T1135A mutant were found to have increased mTORC2-dependent phosphorylation of Akt. In addition, phosphorylation of the Akt substrates FoxO1/3a and glycogen synthase kinase 3α/β (GSK3α/β) was found to be increased in these cells, indicating that S6K1-mediated phosphorylation of Rictor inhibits mTORC2 and Akt signaling. Together, our results uncover a new regulatory link between the two mTOR complexes, whereby Rictor integrates mTORC1-dependent signaling.The mammalian target of rapamycin (mTOR) is an evolutionarily conserved phosphatidylinositol 3-kinase (PI3K)-related Ser/Thr kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate cell growth as well as organ and body size in a variety of organisms (reviewed in references 4, 38, 49, and 77). mTOR was discovered as the molecular target of rapamycin, an antifungal agent used clinically as an immunosuppressant and more recently as an anticancer drug (5, 20). Recent evidence indicates that deregulation of the mTOR pathway occurs in a majority of human cancers (12, 18, 25, 46), suggesting that rapamycin analogs may be potent antineoplastic therapeutic agents.mTOR forms two distinct multiprotein complexes, the rapamycin-sensitive and -insensitive mTOR complexes 1 and 2 (mTORC1 and mTORC2), respectively (6, 47). In cells, rapamycin interacts with FKBP12 and targets the FKBP12-rapamycin binding (FRB) domain of mTORC1, thereby inhibiting some of its function (13, 40, 66). mTORC1 is comprised of the mTOR catalytic subunit and four associated proteins, Raptor (regulatory associated protein of mTOR), mLST8 (mammalian lethal with sec13 protein 8), PRAS40 (proline-rich Akt substrate of 40 kDa), and Deptor (28, 43, 44, 47, 59, 73, 74). The small GTPase Rheb (Ras homolog enriched in brain) is a key upstream activator of mTORC1 that is negatively regulated by the tuberous sclerosis complex 1 (TSC1)/TSC2 GTPase-activating protein complex (reviewed in reference 35). mTORC1 is activated by PI3K and Ras signaling through direct phosphorylation and inactivation of TSC2 by Akt, extracellular signal-regulated kinase (ERK), and p90 ribosomal protein S6 kinase (RSK) (11, 37, 48, 53, 63). mTORC1 activity is also regulated at the level of Raptor. Whereas low cellular energy levels negatively regulate mTORC1 activity through phosphorylation of Raptor by AMP-activated protein kinase (AMPK) (27), growth signaling pathways activating the Ras/ERK pathway positively regulate mTORC1 activity through direct phosphorylation of Raptor by RSK (10). More recent evidence has also shown that mTOR itself positively regulates mTORC1 activity by directly phosphorylating Raptor at proline-directed sites (20a, 75). Countertransport of amino acids (55) and amino acid signaling through the Rag GTPases were also shown to regulate mTORC1 activity (45, 65). When activated, mTORC1 phosphorylates two main regulators of mRNA translation and ribosome biogenesis, the AGC (protein kinase A, G, and C) family kinase p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and thus stimulates protein synthesis and cellular growth (50, 60).The second mTOR complex, mTORC2, is comprised of mTOR, Rictor (rapamycin-insensitive companion of mTOR), mSin1 (mammalian stress-activated mitogen-activated protein kinase-interacting protein 1), mLST8, PRR5 (proline-rich region 5), and Deptor (21, 39, 58, 59, 66, 76, 79). Rapamycin does not directly target and inhibit mTORC2, but long-term treatment with this drug was shown to correlate with mTORC2 disassembly and cytoplasmic accumulation of Rictor (21, 39, 62, 79). Whereas mTORC1 regulates hydrophobic motif phosphorylation of S6K1, mTORC2 has been shown to phosphorylate other members of the AGC family of kinases. Biochemical and genetic evidence has demonstrated that mTORC2 phosphorylates Akt at Ser473 (26, 39, 68, 70), thereby contributing to growth factor-mediated Akt activation (6, 7, 52). Deletion or knockdown of the mTORC2 components mTOR, Rictor, mSin1, and mLST8 has a dramatic effect on mTORC2 assembly and Akt phosphorylation at Ser473 (26, 39, 79). mTORC2 was also shown to regulate protein kinase Cα (PKCα) (26, 66) and, more recently, serum- and glucocorticoid-induced protein kinase 1 (SGK1) (4, 22). Recent evidence implicates mTORC2 in the regulation of Akt and PKCα phosphorylation at their turn motifs (19, 36), but whether mTOR directly phosphorylates these sites remains a subject of debate (4).Activation of mTORC1 has been shown to negatively regulate Akt phosphorylation in response to insulin or insulin-like growth factor 1 (IGF1) (reviewed in references 30 and 51). This negative regulation is particularly evident in cell culture models with defects in the TSC1/TSC2 complex, where mTORC1 and S6K1 are constitutively activated. Phosphorylation of insulin receptor substrate-1 (IRS-1) by mTORC1 (72) and its downstream target S6K1 has been shown to decrease its stability and lead to an inability of insulin or IGF1 to activate PI3K and Akt (29, 69). Although the mechanism is unknown, platelet-derived growth factor receptor β (PDGF-Rβ) has been found to be downregulated in TSC1- and TSC2-deficient murine embryonic fibroblasts (MEFs), contributing to a reduction of PI3K signaling (80). Interestingly, inhibition of Akt phosphorylation by mTORC1 has also been observed in the presence of growth factors other than IGF-1, insulin, or PDGF, suggesting that there are other mechanisms by which mTORC1 activation restricts Akt activity in cells (reviewed in references 6 and 31). Recent evidence demonstrates that rapamycin treatment causes a significant increase in Rictor electrophoretic mobility (2, 62), suggesting that phosphorylation of the mTORC2 subunit Rictor may be regulated by mTORC1 or downstream protein kinases.Herein, we demonstrate that Rictor is phosphorylated by S6K1 in response to mTORC1 activation. We demonstrate that Thr1135 is directly phosphorylated by S6K1 and found that a Rictor mutant lacking this phosphorylation site increases Akt phosphorylation induced by growth factor stimulation. Cells expressing the Rictor T1135A mutant were found to have increased Akt signaling to its substrates compared to Rictor wild-type- and T1135D mutant-expressing cells. Together, our results suggest that Rictor integrates mTORC1 signaling via its phosphorylation by S6K1, resulting in the inhibition of mTORC2 and Akt signaling.  相似文献   

18.
PTP1B−/− mice are resistant to diet-induced obesity due to leptin hypersensitivity and consequent increased energy expenditure. We aimed to determine the cellular mechanisms underlying this metabolic state. AMPK is an important mediator of leptin''s metabolic effects. We find that α1 and α2 AMPK activity are elevated and acetyl-coenzyme A carboxylase activity is decreased in the muscle and brown adipose tissue (BAT) of PTP1B−/− mice. The effects of PTP1B deficiency on α2, but not α1, AMPK activity in BAT and muscle are neuronally mediated, as they are present in neuron- but not muscle-specific PTP1B−/− mice. In addition, AMPK activity is decreased in the hypothalamic nuclei of neuronal and whole-body PTP1B−/− mice, accompanied by alterations in neuropeptide expression that are indicative of enhanced leptin sensitivity. Furthermore, AMPK target genes regulating mitochondrial biogenesis, fatty acid oxidation, and energy expenditure are induced with PTP1B inhibition, resulting in increased mitochondrial content in BAT and conversion to a more oxidative muscle fiber type. Thus, neuronal PTP1B inhibition results in decreased hypothalamic AMPK activity, isoform-specific AMPK activation in peripheral tissues, and downstream gene expression changes that promote leanness and increased energy expenditure. Therefore, the mechanism by which PTP1B regulates adiposity and leptin sensitivity likely involves the coordinated regulation of AMPK in hypothalamus and peripheral tissues.Protein tyrosine phosphatase 1B (PTP1B) belongs to a family of tyrosine phosphatases with diverse roles in eukaryotes (2, 4). PTP1B attenuates insulin signaling by dephosphorylating the insulin receptor (19, 22, 61) and possibly IRS-1 (9, 23) and leptin signaling by dephosphorylating JAK2, which phosphorylates the leptin receptor and associated substrates (10, 45, 67). PTP1B-deficient mice are insulin hypersensitive, lean, and resistant to diet-induced obesity (20, 36) due, at least in part, to increased energy expenditure (36). The leanness can be explained by the absence of PTP1B in neurons, because neuron-specific PTP1B−/− mice also have reduced body weight and adiposity and increased energy expenditure (6). In contrast, muscle- and liver-specific PTP1B-deficient mice have normal body weight with improved insulin sensitivity, whereas adipose-PTP1B-deficient mice have increased body weight (6, 15, 16). These data suggest that PTP1B in peripheral tissues such as muscle and liver is an important mediator of peripheral insulin sensitivity, whereas PTP1B in the nervous system plays a critical role in regulating energy expenditure and adiposity (6).The adipocyte-derived hormone leptin plays an essential role in regulating energy homeostasis by acting on multiple tissues, most importantly the hypothalamus, to regulate food intake and energy expenditure (1). PTP1B−/− mice have enhanced basal and leptin-stimulated hypothalamic STAT3 phosphorylation and are hypersensitive to leptin''s effect on food intake and body weight (10, 67). The overexpression of PTP1B in heterologous cells dose dependently reduces the leptin-induced phosphorylation of JAK2 and STAT3 and inhibits leptin-stimulated STAT3-dependent reporter gene activation (10, 35, 39, 67). These and other data established that enhanced leptin sensitivity contributes to the leanness in PTP1B−/− mice. We sought to determine the cellular mechanisms underlying the altered energy homeostasis in the setting of PTP1B deficiency.AMP-activated protein kinase (AMPK) is a major mediator of leptin''s metabolic effects (43, 44). AMPK is a fuel-sensing enzyme complex activated by cellular stresses that increase AMP or deplete ATP, including hypoxia, ischemia, glucose deprivation, uncouplers of oxidative phosphorylation, exercise, and muscle contraction (66). AMPK also is activated by the antidiabetic drugs metformin (68) and the thiazolidinediones (21). Mechanisms involved in AMPK activation include (i) the binding of AMP to an allosteric site on the γ subunit, which renders the holoenzyme resistant to inactivating serine phosphatases and also may have direct allosteric effects on kinase activity (55), and (ii) phosphorylation by upstream AMPK kinases of the α (catalytic) subunits on Thr172, which is essential for kinase activity (29). Once activated, AMPK phosphorylates multiple downstream substrates, leading to the inhibition of ATP-utilizing pathways, such as fatty acid synthesis, and the activation of ATP-generating pathways, including fatty acid oxidation (34).The phosphorylation of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC) by AMPK results in the inhibition of ACC activity, decreased malonyl-CoA content, and a subsequent increase in fatty acid oxidation in skeletal muscle caused by the disinhibition of carnitine palmitoyltransferase 1 (27, 52, 62). The leptin stimulation of muscle fatty acid oxidation is mediated by AMPK (44). AMPK also is an important regulator of muscle mitochondrial biogenesis and function (7, 37, 48, 58, 63). This may, in part, be mediated by peroxisome proliferator-activated receptor γ (PPARγ)-coactivator 1α (PGC-1α), because AMPK induces the expression and phosphorylation of PGC-1α, which regulates mitochondrial biogenesis and muscle fiber type (31).In addition to a role for AMPK in leptin action in peripheral tissues, the inhibition of hypothalamic AMPK activity by leptin plays an important role in mediating leptin''s effect on food intake and energy homeostasis (43). This appears to involve neurons that express neuropeptide Y (NPY) and agouti-related peptide (AgRP), since the expression of constitutively active AMPK in the basomedial hypothalamus augments NPY/AgRP expression (43). Furthermore, the deletion of the AMPK α2 catalytic subunit specifically in these neurons results in leanness, whereas deletion in proopiomelanocortin (POMC)-expressing neurons results in mild obesity (13).To determine whether alterations in AMPK contribute to increased energy expenditure and leanness in PTP1B−/− mice, we investigated the AMPK pathway in peripheral tissues and hypothalamus. We demonstrate that the global absence of PTP1B alters AMPK and downstream biological processes in multiple tissues, and that neuronal PTP1B regulates AMPK activity in peripheral tissues in an isoform-specific manner. Our data establish a novel link between PTP1B and AMPK, two signaling molecules that are critical in the regulation of energy homeostasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号