首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA topoisomerases are the enzymes responsible for maintaining the topological states of DNA. In order to change the topology of DNA, topoisomerases pass one or two DNA strands through transient single or double strand breaks in the DNA phosphodiester backbone. It has been proposed that both type IA and type II enzymes change conformation dramatically during the reaction cycle in order to accomplish these transformations. In the case of Escherichia coli DNA topoisomerase I, it has been suggested that a 30 kDa fragment moves away from the rest of the protein to create an entrance into the central hole in the protein. Structures of the 30 kDa fragment reveal that indeed this fragment can change conformation significantly. The fragment is composed of two domains, and while the domains themselves remain largely unchanged, their relative arrangement can change dramatically.  相似文献   

3.
When ionizing radiation traverses a DNA molecule, a combination of two or more base damages, sites of base loss or single strand breaks can be produced within 1-4 nm on opposite DNA strands, forming a multiply damaged site (MDS). In this study, we reconstituted the base excision repair system to examine the processing of a simple MDS containing the base damage, 8-oxoguanine (8-oxoG), or an abasic (AP) site, situated in close opposition to a single strand break, and asked if a double strand break could be formed. The single strand break, a nucleotide gap containing 3' and 5' phosphate groups, was positioned one, three or six nucleotides 5' or 3' to the damage in the complementary DNA strand. Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which recognizes both 8-oxoG and AP sites, was able to cleave the 8-oxoG or AP site-containing strand when the strand break was positioned three or six nucleotides away 5' or 3' on the opposing strand. When the strand break was positioned one nucleotide away, the target lesion was a poor substrate for Fpg. Binding studies using a reduced AP (rAP) site in the strand opposite the gap, indicated that Fpg binding was greatly inhibited when the gap was one nucleotide 5' or 3' to the rAP site.To complete the repair of the MDS containing 8-oxoG opposite a single strand break, endonuclease IV DNA polymerase I and Escherichia coli DNA ligase are required to remove 3' phosphate termini, insert the "missing" nucleotide, and ligate the nicks, respectively. In the absence of Fpg, repair of the single strand break by endonuclease IV, DNA polymerase I and DNA ligase occurred and was not greatly affected by the 8-oxoG on the opposite strand. However, the DNA strand containing the single strand break was not ligated if Fpg was present and removed the opposing 8-oxoG. Examination of the complete repair reaction products from this reaction following electrophoresis through a non-denaturing gel, indicated that a double strand break was produced. Repair of the single strand break did occur in the presence of Fpg if the gap was one nucleotide away. Hence, in the in vitro reconstituted system, repair of the MDS did not occur prior to cleavage of the 8-oxoG by Fpg if the opposing single strand break was situated three or six nucleotides away, converting these otherwise repairable lesions into a potentially lethal double strand break.  相似文献   

4.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

5.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

6.
BACKGROUND: DNA topoisomerases are enzymes that change the topology of DNA. Type IA topoisomerases transiently cleave one DNA strand in order to pass another strand or strands through the break. In this manner, they can relax negatively supercoiled DNA and catenate and decatenate DNA molecules. Structural information on Escherichia coli DNA topoisomerase III is important for understanding the mechanism of this type of enzyme and for studying the mechanistic differences among different members of the same subfamily. RESULTS: The structure of the intact and fully active E. coli DNA topoisomerase III has been solved to 3.0 A resolution. The structure shows the characteristic fold of the type IA topoisomerases that is formed by four domains, creating a toroidal protein. There is remarkable structural similarity to the 67 kDa N-terminal fragment of E. coli DNA topoisomerase I, although the relative arrangement of the four domains is significantly different. A major difference is the presence of a 17 amino acid insertion in topoisomerase III that protrudes from the side of the central hole and could be involved in the catenation and decatenation reactions. The active site is formed by highly conserved amino acids, but the structural information and existing biochemical and mutagenesis data are still insufficient to assign specific roles to most of them. The presence of a groove in one side of the protein is suggestive of a single-stranded DNA (ssDNA)-binding region. CONCLUSIONS: The structure of E. coli DNA topoisomerase III resembles the structure of E. coli DNA topoisomerase I except for the presence of a positively charged loop that may be involved in catenation and decatenation. A groove on the side of the protein leads to the active site and is likely to be involved in DNA binding. The structure helps to establish the overall mechanism for the type IA subfamily of topoisomerases with greater confidence and expands the structural basis for understanding these proteins.  相似文献   

7.
Type IIs restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions, typically several base pairs away from the recognition site. These enzymes are generally monomers that transiently associate to form dimers to cleave both strands. Their reactions could involve bridging interactions between two copies of their recognition sequence. To examine this possibility, several type IIs enzymes were tested against substrates with either one or two target sites. Some of the enzymes cleaved the DNA with two target sites at the same rate as that with one site, but most cut their two-site substrate more rapidly than the one-site DNA. In some cases, the two sites were cut sequentially, at rates that were equal to each other but that exceeded the rate on the one-site DNA. In another case, the DNA with two sites was cleaved rapidly at one site, but the residual site was cleaved at a much slower rate. In a further example, the two sites were cleaved concertedly to give directly the final products cut at both sites. Many type IIs enzymes thus interact with two copies of their recognition sequence before cleaving DNA, although via several different mechanisms.  相似文献   

8.
The two protein subunits of the EcoRI restriction enzyme interact symmetrically with the recognition site on DNA, so that each subunit is in position to cleave one strand of the DNA. But each subunit seems to require a protein conformation change before it can cleave DNA. Depending upon whether one or both subunits change conformation during the life-time of the enzyme-DNA complex, a single reaction of the EcoRI enzyme cleaves either one or both strands of the DNA. Reaction profiles with other restriction enzymes differ from EcoRI, though the underlying mechanisms may be the same.  相似文献   

9.
It is proposed that in meiotic chromosomes single strand breaks of DNA originate either in the delayed regions of replicons or as a result of the excision activity of DNA polymerase during zygotene DNA synthesis. Rejoining of the break points belonging to non-sister chromatids takes place by switching over of the polymerase from one strand of DNA to another non-sister strand of the same polarity and gives rise to recombination intermediates (half-chromatid chiasmata). Strand migration in a recombination intermediate or copying of the same parental strand twice during zygotene as a consequence of a delay in copying the homologous strand would lead to gene conversion. Nicking of the cross strands (parental strands) in any recombination intermediate and subsequent repair leads to recombination for flanking markers. A possible way in which three-strand double crossovers occur and the process of recombination are discussed.  相似文献   

10.
To investigate the mechanism of double strand DNA break formation in mammalian cells, an in vitro assay was established using closed circular DNA containing two uracils on opposite DNA strands (18 and 30 base pairs apart) and extracts prepared from human cells. In this assay, formation of double strand breaks was detected by the conversion of circular DNA to linear DNA. Approximately 4-fold more double strand DNA breaks were produced by extracts from cells deficient in DNA ligase I (46BR) relative to those produced by extracts from control cells (MRC5, derived from a clinically normal individual). In parallel with the amount of double strand DNA breaks, extracts from 46BR cells produced longer repair patches (up to 24 bases in length) than those from MRC5 cells (typically <5 bases long). When purified DNA ligase I was added to 46BR extracts to complement the DNA ligase deficiency, only a negligible difference was found between the amount of doublestrand DNA breaks or the repair patch size generated in the assay relative to MRC5 extracts. Together, our data demonstrate that double strand DNA breaks are produced through formation of DNA repair patches. We refer to this process of double strand break formation as the "DNA repair patch-mediated pathway."  相似文献   

11.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

12.
We investigated systematically the knotting of nicked circular duplex DNA by Escherichia coli topoisomerase I. Agarose gel electrophoresis of knots forms a ladder of DNA bands. Each rung is made up of a variety of knots with the same number of nodes, or segment crossings; knots in adjacent rungs differ by one node. We extended the technique of electron microscopy of recA protein-coated DNA to the visualization of the complex knots tied by topoisomerase I. The striking result is that the enzyme produces every knot theoretically possible. The requirement for excess enzyme to form complex knots suggests a role for topoisomerase I in contorting the DNA in addition to promoting strand passage. We conclude that nodes formed are equally likely to be positive or negative and that topoisomerase I can pass DNA strands through a transient enzyme-generated break without regard to orientation of the passing strand. The results are interpreted in terms of a formulation for the topological requirements for knotting.  相似文献   

13.
Deoxyribonuclease I produces staggered cuts in the DNA of chromatin   总被引:8,自引:0,他引:8  
The relationship of cuts made by deoxyribonuclease I (DNase I, EC. 3.1.4.5) on the two strands of DNA of chromatin has been investigated. DNA was extracted from a DNase I digest of rat liver nuclei and incubated with the large fragment of DNA polyrnerase I. Analysis of the products of this incubation indicates the cuts made by DNase I on opposite strands are staggered with respect to one another. A cut on one strand is about two bases in the 3′ direction or eight bases in the 5′ direction from the position on its own strand which is directly across from the cut on the other strand. A different result is obtained when a DNase I digest of native DNA is analyzed. Current models for the organization of DNA in the nucleosome are discussed with respect to these results.  相似文献   

14.
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.  相似文献   

15.
Topoisomerases class II (topoII) cleave and re-ligate the DNA double helix to allow the passage of an intact DNA strand through it. Chemotherapeutic drugs such as etoposide target topoII, interfere with the normal enzymatic cleavage/re-ligation reaction and create a DNA double-strand break (DSB) with the enzyme covalently bound to the 5'-end of the DNA. Such DSBs are repaired by one of the two major DSB repair pathways, non-homologous end-joining (NHEJ) or homologous recombination. However, prior to repair, the covalently bound topoII needs to be removed from the DNA end, a process requiring the MRX complex and ctp1 in fission yeast. CtIP, the mammalian ortholog of ctp1, is known to promote homologous recombination by resecting DSB ends. Here, we show that human cells arrested in G0/G1 repair etoposide-induced DSBs by NHEJ and, surprisingly, require the MRN complex (the ortholog of MRX) and CtIP. CtIP's function for repairing etoposide-induced DSBs by NHEJ in G0/G1 requires the Thr-847 but not the Ser-327 phosphorylation site, both of which are needed for resection during HR. This finding establishes that CtIP promotes NHEJ of etoposide-induced DSBs during G0/G1 phase with an end-processing function that is distinct to its resection function.  相似文献   

16.
The actions of Neurospora endo-exonuclease on double strand DNAs   总被引:3,自引:0,他引:3  
Neurospora crassa endo-exonuclease, an enzyme implicated in recombinational DNA repair, was found previously to have a distributive endonuclease activity with a high specificity for single strand DNA and a highly processive exonuclease activity. The activities of endo-exonuclease on double strand DNA substrates have been further explored. Endo-exonuclease was shown to have a low bona fide endonuclease activity with completely relaxed covalently closed circular DNA and made site-specific breaks in linear double strand DNA at a low frequency while simultaneously generating a relatively high level of single strand breaks (nicks) in the DNA. Sequencing at nicks induced by endo-exonuclease in pBR322 restriction fragments showed that the highest frequency of nicking occurred at the mid-points of two sites with the common sequence, p-AGCACT-OH. In addition, sequencing revealed less frequent nicking at identical or homologous hexanucleotide sequences in all other 54 cases examined where these sequences either straddled the break site itself or were within a few nucleotides on either side of the break site. The exonucleolytic action of endo-exonuclease on linear DNA showed about 100-fold preference for acting in the 5' to 3' direction. Removal of the 5'-terminal phosphates substantially reduced this activity, internal nicking, and the ability of endo-exonuclease to generate site-specific double strand breaks. On the other hand, nicking of the dephosphorylated double strand DNA with pancreatic DNase I stimulated the exonuclease activity by almost 5-fold, but no stimulation was observed when the DNA was nicked by Micrococcal nuclease. Thus, 5'-p termini either at double strand ends or at nicks in double strand DNA are entry points to the duplex from which endo-exonuclease diffuses linearly or "tracks" in the 5' to 3' direction to initiate its major endo- and exonucleolytic actions. The results are interpreted to show how it is possible for endo-exonuclease to generate single strand DNA for switching into a homologous duplex either at a nick or while remaining bound at a double strand break in the DNA. Such mechanisms are consistent with current models for recombinational double strand break repair in eukaryotes.  相似文献   

17.
A unique reaction for type II DNA topoisomerase is its cleavage of a pair of DNA strands in concert. We show however, that in a reaction mixture containing a molar excess of EDTA over Mg2+, or when Mg2+ is substituted by Ca2+, Mn2+, or Co2+, the enzyme cleaves only one rather than both strands. These results suggest that the divalent cations may play an important role in coordinating the two subunits of DNA topoisomerase II during the strand cleavage reaction. The single strand and the double strand cleavage reactions are similar in the following aspects: both require the addition of a protein denaturant, can be reversed by low temperature or high salt, and a topoisomerase II molecule is attached covalently to the 5' phosphoryl end of each broken DNA strand. Furthermore, the single strand cleavage sites share a similar sequence preference with double strand cleavage sites. There is, however, a strand bias for the single strand cleavage reaction. We show also that under single strand cleavage conditions, topoisomerase II still possesses a low level of double strand passage activity: it can introduce topological knots into both covalently closed or nicked DNA rings, and change the linking number of a plasmid DNA by steps of two. The implication of this observation on the sequential cleavage of the two strands of the DNA duplex during the normal DNA double strand passage process catalyzed by type II DNA topoisomerases is discussed.  相似文献   

18.
DNA strand passage through an enzyme-mediated gate is a key step in the catalytic cycle of topoisomerases to produce topological transformations in DNA. In most of the reactions catalyzed by topoisomerases, strand passage is not directional; thus, the enzyme simply provides a transient DNA gate through which DNA transport is allowed and thereby resolves the topological entanglement. When studied in isolation, the type IA topoisomerase family appears to conform to this rule. Interestingly, type IA enzymes can carry out directional strand transport as well. We examined here the biochemical mechanism for directional strand passage of two type IA topoisomerases: reverse gyrase and a protein complex of topoisomerase IIIα and Bloom helicase. These enzymes are able to generate vectorial strand transport independent of the supercoiling energy stored in the DNA molecule. Reverse gyrase is able to anneal single strands, thereby increasing linkage number of a DNA molecule. However, topoisomerase IIIα and Bloom helicase can dissolve DNA conjoined with a double Holliday junction, thus reducing DNA linkage. We propose here that the helicase or helicase-like component plays a determinant role in the directionality of strand transport. There is thus a common biochemical ground for the directional strand passage for the type IA topoisomerases.  相似文献   

19.
Concatemer DNA duplexes which contain at the EcoRII restriction endonuclease cleavage sites (formula; see text) phosphodiester, phosphoamide or pyrophosphate internucleotide bonds have been synthesized. It has been shown that this enzyme did not cleave the substrate at phosphoamide bond. EcoRII endonuclease catalyzes single-strand cleavages both in dA- and dT-containing strands of the recognition site if the cleavage of the other strand has been blocked by modification of scissile bond or if the other strand has been cleaved. This enzyme interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of another one. Nucleotide sequences flanking the EcoRII site on both sides are necessary for effective cleavage of the substrate.  相似文献   

20.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3′-phosphotyrosine intermediates, and rearrange the free 5′ ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5′-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100?kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5′-phosphate and 3′-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号