共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cecilia Mannironi Marco Proietto Francesca Bufalieri Enrico Cundari Angela Alagia Svetlana Danovska Teresa Rinaldi Valeria Famiglini Antonio Coluccia Giuseppe La Regina Romano Silvestri Rodolfo Negri 《PloS one》2014,9(1)
Background
Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes.Methodology/Principal Findings
In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity.Conclusions/Significance
Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases. 相似文献5.
6.
7.
8.
Zhaoliang Liu Xian Chen Suoling Zhou Lan Liao Rui Jiang Jianming Xu 《International journal of biological sciences》2015,11(5):494-507
Kdm3b is a Jumonji C domain-containing protein that demethylates mono- and di-methylated lysine 9 of histone H3 (H3K9me1 and H3K9me2). Although the enzyme activity of Kdm3b is well characterized in vitro, its genetic and physiological function remains unknown. Herein, we generated Kdm3b knockout (Kdm3bKO) mice and observed restricted postnatal growth and female infertility in these mice. We found that Kdm3b ablation decreased IGFBP-3 expressed in the kidney by 53% and significantly reduced IGFBP-3 in the blood, which caused an accelerated degradation of IGF-1 and a 36% decrease in circulating IGF-1 concentration. We also found Kdm3b was highly expressed in the female reproductive organs including ovary, oviduct and uterus. Knockout of Kdm3b in female mice caused irregular estrous cycles, decreased 45% of the ovulation capability and 47% of the fertilization rate, and reduced 44% of the uterine decidual response, which were accompanied with a more than 50% decrease in the circulating levels of the 17beta-estradiol. Importantly, these female reproductive phenotypes were associated with significantly increased levels of H3K9me1/2/3 in the ovary and uterus. These results demonstrate that Kdm3b-mediated H3K9 demethylation plays essential roles in maintenance of the circulating IGF-1, postnatal somatic growth, circulating 17beta-estradiol, and female reproductive function. 相似文献
9.
10.
11.
Lin Zha Fenfen Li Rui Wu Liana Artinian Vincent Rehder Liqing Yu Houjie Liang Bingzhong Xue Hang Shi 《The Journal of biological chemistry》2015,290(41):25151-25163
12.
13.
14.
15.
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation. 相似文献
16.
Qingfeng Chen Xiangsong Chen Quan Wang Faben Zhang Zhiyong Lou Qifa Zhang Dao-Xiu Zhou 《PLoS genetics》2013,9(1)
Histone lysine methylation is an important epigenetic modification in regulating chromatin structure and gene expression. Histone H3 lysine 4 methylation (H3K4me), which can be in a mono-, di-, or trimethylated state, has been shown to play an important role in gene expression involved in plant developmental control and stress adaptation. However, the resetting mechanism of this epigenetic modification is not yet fully understood. In this work, we identified a JmjC domain-containing protein, JMJ703, as a histone lysine demethylase that specifically reverses all three forms of H3K4me in rice. Loss-of-function mutation of the gene affected stem elongation and plant growth, which may be related to increased expression of cytokinin oxidase genes in the mutant. Analysis of crystal structure of the catalytic core domain (c-JMJ703) of the protein revealed a general structural similarity with mammalian and yeast JMJD2 proteins that are H3K9 and H3K36 demethylases. However, several specific features were observed in the structure of c-JMJ703. Key residues that interact with cofactors Fe(II) and N-oxalylglycine and the methylated H3K4 substrate peptide were identified and were shown to be essential for the demethylase activity in vivo. Several key residues are specifically conserved in known H3K4 demethylases, suggesting that they may be involved in the specificity for H3K4 demethylation. 相似文献
17.
18.
组蛋白去乙酰化酶4(histone deacetylase 4,HDAC4)是一类依赖锌的去乙酰化酶,属于Ⅱ类组蛋白去乙酰化酶(histone deacetylases,HDACs),主要具有去乙酰化酶的活性。HDAC4由去乙酰化酶结构域发挥去乙酰化酶的作用,还具有核定位序列和核输出序列,通过转录后与翻译后水平的修饰可在细胞核和细胞质之间穿梭,进而参与多种调节过程。近年来的研究发现,HDAC4可参与基因的转录调控、细胞凋亡、代谢等诸多生物进程,在多种疾病的发生发展中发挥重要作用。本文主要从HDAC4的结构、去乙酰作用、自身的修饰及其在核浆中的穿梭作用对其进行概述,同时对其在骨关节炎、心血管疾病、肌萎缩性侧索硬化症等不同疾病中的作用、相关的分子机制及组蛋白抑制剂在肿瘤中的应用等方面的研究进展进行综述。 相似文献
19.
Histone H3K14 and H4K8 hyperacetylation is associated with Escherichia coli-induced mastitis in mice
《Epigenetics》2013,8(5):492-501
Mastitis is a multietiological complex disease, defined as inflammation of parenchyma of mammary glands. Bacterial infection is the predominant cause of mastitis, though fungal, viral and mycoplasma infections also have been reported. Based on the severity of the disease, mastitis can be classified into subclinical, clinical and chronic forms. Bacterial pathogens from fresh cow milk were isolated and classified by standard microbiological tests and multiplex PCR. Epidemiological studies have shown that Escherichia coli is the second largest mastitis pathogen after Staphylococcus aureus in India. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR profile and presence of virulence genes, a field isolate of E. coli was used for intramammary inoculation in lactating mice. Histopathological examination of hematoxylin and eosin stained sections showed severe infiltration of polymorphonuclear neutrophils, mononuclear inflammatory cells in the alveolar lumen and also in interstitial space, and necrosis of alveolar epithelial cells after 24 h. Western blot and immunohistochemical analysis of mice mammary tissues showed significant hyperacetylation at histone H3K14 residue of both mammary epithelial cells and migrated inflammatory cells. Quantitative real-time PCR and genome-wide gene expression profile in E. coli infected mice mammary tissue revealed differential expression of genes related to inflammation, immunity, antimicrobial peptide expression, acute phase response and oxidative stress response. Expression of milk proteins was also suppressed. ChIP assay from paraffinized tissues showed selective enrichment of acetylated histone H3K14 and H4K8 at the promoters of overexpressed genes. These data suggest that E. coli infection in mice mammary tissue leads to histone hyperacetylation at the promoter of immune genes, which is a pre-requisite for the expression of inflammatory genes in order to mount a drastic immune response. 相似文献
20.
Chun Ruan Haochen Cui Chul-Hwan Lee Sheng Li Bing Li 《The Journal of biological chemistry》2016,291(10):5428-5438
Recognition of histone post-translational modifications is pivotal for directing chromatin-modifying enzymes to specific genomic regions and regulating their activities. Emerging evidence suggests that other structural features of nucleosomes also contribute to precise targeting of downstream chromatin complexes, such as linker DNA, the histone globular domain, and nucleosome spacing. However, how chromatin complexes coordinate individual interactions to achieve high affinity and specificity remains unclear. The Rpd3S histone deacetylase utilizes the chromodomain-containing Eaf3 subunit and the PHD domain-containing Rco1 subunit to recognize nucleosomes that are methylated at lysine 36 of histone H3 (H3K36me). We showed previously that the binding of Eaf3 to H3K36me can be allosterically activated by Rco1. To investigate how this chromatin recognition module is regulated in the context of the Rpd3S complex, we first determined the subunit interaction network of Rpd3S. Interestingly, we found that Rpd3S contains two copies of the essential subunit Rco1, and both copies of Rco1 are required for full functionality of Rpd3S. Our functional dissection of Rco1 revealed that besides its known chromatin-recognition interfaces, other regions of Rco1 are also critical for Rpd3S to recognize its nucleosomal substrates and functionin vivo. This unexpected result uncovered an important and understudied aspect of chromatin recognition. It suggests that precisely reading modified chromatin may not only need the combined actions of reader domains but also require an internal signaling circuit that coordinates the individual actions in a productive way. 相似文献