首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archaeal host cells infected by Sulfolobus turreted icosahedral virus (STIV) and Sulfolobus islandicus rod-shaped virus 2 (SIRV2) produce unusual pyramid-like structures on the cell surface prior to virus-induced cell lysis. This viral lysis process is distinct from known viral lysis processes associated with bacterial or eukaryal viruses. The STIV protein C92 and the SIRV2 protein 98 are the only viral proteins required for the formation of the pyramid lysis structures of STIV and SIRV2, respectively. Since SIRV2 and STIV have fundamentally different morphotypes and genome sequences, it is surprising that they share this lysis system. In this study, we have constructed a collection of C92/P98 chimeric proteins and tested their abilities, both in the context of virus replication and alone, to form pyramid lysis structures in S. solfataricus. The results of this study illustrate that these proteins are functionally homologous when expressed as individual chimeric proteins but not when expressed in the context of complete STIV infection.  相似文献   

2.
Archaella are the archaeal motility structure, which are structurally similar to Gram-negative bacterial type IV pili but functionally resemble bacterial flagella. Structural and biochemical data of archaellum subunits are missing. FlaX, a conserved subunit in crenarchaeal archaella, formed high molecular weight complexes that adapted a ring-like structure with an approximate diameter of 30 nm. The C terminus of FlaX was not only involved in the oligomerization, but also essential for FlaX interaction with FlaI, the bifunctional ATPase that is involved in assembly and rotation of the archaellum. This study gives first insights in the assembly apparatus of archaella.  相似文献   

3.
4.
Phycobiliproteins are employed by cyanobacteria, red algae, glaucophytes, and cryptophytes for light-harvesting and consist of apoproteins covalently associated with open-chain tetrapyrrole chromophores. Although the majority of organisms assemble the individual phycobiliproteins into larger aggregates called phycobilisomes, members of the cryptophytes use a single type of phycobiliprotein that is localized in the thylakoid lumen. The cryptophyte Guillardia theta (Gt) uses phycoerythrin PE545 utilizing the uncommon chromophore 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB). Both the biosynthesis and the attachment of chromophores to the apophycobiliprotein have not yet been investigated for cryptophytes. In this study, we identified and characterized enzymes involved in PEB biosynthesis. In addition, we present the first in-depth biochemical characterization of a eukaryotic phycobiliprotein lyase (GtCPES). Plastid-encoded HO (GtHo) was shown to convert heme into biliverdin IXα providing the substrate with a putative nucleus-encoded DHBV:ferredoxin oxidoreductase (GtPEBA). A PEB:ferredoxin oxidoreductase (GtPEBB) was found to convert DHBV to PEB, which is the substrate for the phycobiliprotein lyase GtCPES. The x-ray structure of GtCPES was solved at 2.0 Å revealing a 10-stranded β-barrel with a modified lipocalin fold. GtCPES is an S-type lyase specific for binding of phycobilins with reduced C15=C16 double bonds (DHBV and PEB). Site-directed mutagenesis identified residues Glu-136 and Arg-146 involved in phycobilin binding. Based on the crystal structure, a model for the interaction of GtCPES with the apophycobiliprotein CpeB is proposed and discussed.  相似文献   

5.
Archaea have developed specific tools permitting life under harsh conditions and archaeal lipids are one of these tools. This microreview describes the particular features of tetraether-type archaeal lipids and their potential applications in biotechnology. Natural and synthetic tetraether lipid structures as well as their applications in drug/gene delivery, vaccines and proteoliposomes or as lipid films are reviewed.  相似文献   

6.
HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 Å, respectively. Comparison of these β/α-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg2+ coordination and positioning of the flexible loop containing the conserved HMGCL “signature” sequence. In the R41M-Mg2+-substrate ternary complex, loop residue Cys266 (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg2+-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg2+ liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His233 and His235 imidazoles, other Mg2+ ligands are the Asp42 carboxyl oxygen and an ordered water molecule. This water, positioned between Asp42 and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg41 with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg41 mutation on reaction product enolization and explains why human Arg41 mutations cause drastic enzyme deficiency.  相似文献   

7.
Recent breakthroughs in cytokinin research have shed new light on the role of cytokinin in plant development. Loss-of-function mutants of a cytokinin receptor reveal a role for the hormone in establishment of the vasculature during embryonic development. Cytokinin controls the number of early cell divisions via a two-component signaling system. Genetically engineered plants that have a reduced cytokinin content demonstrate the regulatory role of the hormone in control of meristem activity and organ growth during postembryonic development, with opposite roles in roots and shoots. There is increasing evidence from work with transgenic plants and mutant analysis that cytokinins do not perform the previously proposed function as a root-derived signal for the regulation of shoot branching. Root-borne cytokinins might serve as a long-range signal controling other processes at distant sites, such as responding to nutritional status, particularly nitrogen availability.  相似文献   

8.
9.
The flagellar motor is one type of propulsion device of motile bacteria. The cytoplasmic ring (C-ring) of the motor interacts with the stator to generate torque in clockwise and counterclockwise directions. The C-ring is composed of three proteins, FliM, FliN, and FliG. Together they form the “switch complex” and regulate switching and torque generation. Here we report the crystal structure of the middle domain of FliM in complex with the middle and C-terminal domains of FliG that shows the interaction surface and orientations of the proteins. In the complex, FliG assumes a compact conformation in which the middle and C-terminal domains (FliGMC) collapse and stack together similarly to the recently published structure of a mutant of FliGMC with a clockwise rotational bias. This intramolecular stacking of the domains is distinct from the intermolecular stacking seen in other structures of FliG. We fit the complex structure into the three-dimensional reconstructions of the motor and propose that the cytoplasmic ring is assembled from 34 FliG and FliM molecules in a 1:1 fashion.  相似文献   

10.
S Li  X Yang  J Shao  Y Shen 《PloS one》2012,7(8):e42775
The CBM complex (CARMA1, BCL10 and MALT1) plays a crucial role in B and T lymphocyte activation. CARMA1 serves as a scaffold for BCL10, MALT1 and other effector proteins and regulates various signaling pathways related to the immune response. The assembly of CARMA1 and BCL10 is mediated through a CARD-CARD interaction. Here, we report the crystal structure of the CARD domain of CARMA1 at a resolution of 1.75 Å. The structure consists of six helices, as previously determined for CARD domains. Structural and computational analysis identified the binding interface between CARMA1-CARD and BCL10-CARD, which consists of a basic patch in CARMA1 and an acidic patch in BCL10. Site-directed mutagenesis, co-immunoprecipitation and an NF-κB activation assay confirmed that the interface is necessary for association and downstream signaling. Our studies provide molecular insight into the assembly of CARMA1 and BCL10.  相似文献   

11.
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr–Purcell–Meiboom–Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.  相似文献   

12.

Background

The silent-information regulator 2 proteins, otherwise called sirtuins, are currently considered as emerging anti-parasitic targets. Nicotinamide, a pan-sirtuin inhibitor, is known to cause kinetoplast alterations and the arrested growth of T. cruzi, the protozoan responsible for Chagas disease. These observations suggested that sirtuins from this parasite (TcSir2rp1 and TcSir2rp3) could play an important role in the regulation of the parasitic cell cycle. Thus, their inhibition could be exploited for the development of novel anti-trypanosomal compounds.

Methods

Homology modeling was used to determine the three-dimensional features of the sirtuin TcSir2rp1 from T. cruzi. The apo-form of human SIRT2 and the same structure solved in complex with its co-substrate NAD+ allowed the modeling of TcSir2rp1 in the open and closed conformational states. Molecular docking studies were then carried out. A library composed of fifty natural and diverse compounds that are known to be active against this parasite, was established based on the literature and virtually screened against TcSir2rp1 and TcSir2rp3, which was previously modeled by our group.

Results

In this study, two conformational states of TcSir2rp1 were described for the first time. The molecular docking results of compounds capable of binding sirtuins proved to be meaningful when the closed conformation of the protein was taken into account for calculations. This specific conformation was then used for the virtual screening of antritrypanosomal phytochemicals against TcSir2rp1 and TcSir2rp3. The calculations identified a limited number of scaffolds extracted from Vismia orientalis, Cussonia zimmermannii, Amomum aculeatum and Anacardium occidentale that potentially interact with both proteins.

Conclusions

The study provided reliable models for future structure-based drug design projects concerning sirtuins from T. cruzi. Molecular docking studies highlighted not only the advantages of performing in silico interaction studies on their closed conformations but they also suggested the potential mechanism of action of four phytochemicals known for their anti-trypanosomal activity in vitro.  相似文献   

13.
The reduction of protochlorophyllide (Pchlide) is a key regulatory step in the biosynthesis of chlorophyll in phototrophic organisms. Two distinct enzymes catalyze this reduction; a light-dependent NADPH:protochlorophyllide oxidoreductase (POR) and light-independent Pchlide reductase (DPOR). Both enzymes are widely distributed among phototrophic organisms with the exception that only POR is found in angiosperms and only DPOR in anoxygenic photosynthetic bacteria. Consequently, angiosperms become etiolated in the absence of light, since the reduction of Pchlide in angiosperms is solely dependent on POR. In eukaryotic phototrophs, POR is a nuclear-encoded single polypeptide and post-translationally imported into plastids. POR possesses unique features, its light-dependent catalytic activity, accumulation in plastids of dark-grown angiosperms (etioplasts) via binding to its substrate, Pchlide, and cofactor, NADPH, resulting in the formation of prolamellar bodies (PLBs), and rapid degradation after catalysis under subsequent illumination. During the last decade, considerable progress has been made in the study of the gene organization, catalytic mechanism, membrane association, regulation of the gene expression, and physiological function of POR. In this review, we provide a brief overview of DPOR and then summarize the current state of knowledge on the biochemistry and molecular biology of POR mainly in angiosperms. The physiological and evolutional implications of POR are also discussed.  相似文献   

14.
Sea urchin fertilization envelope assembly provides an ideal model system for investigating the production and modification of an extracellular matrix. The contents of secretory vesicles and the egg glycocalyx mix to initiate assembly. Limited proteolysis and covalent crosslinking by a transglutaminase act as early events to modify the nascent envelope. A subset of secreted proteins binds to this matrix through ionic interactions that require divalent cations. For example, one secreted protein, proteoliaisin, is responsible for attaching ovoperoxidase to the envelope. Ovoperoxidase hardens the envelope by using hydrogen peroxide, produced by the egg during the respiratory burst, to form dityrosine crosslinks between a subset of fertilization envelope proteins. Numerous spatial and temporal regulatory mechanisms exist to ensure that proper assembly occurs in an environment isolated from the normal cytosolic regulatory machinery.  相似文献   

15.
Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.  相似文献   

16.
17.
18.
19.
Prokaryotic thermophiles supply stable human protein homologs for structural biology; yet, eukaryotic thermophiles would provide more similar macromolecules plus those missing in microbes. Alvinella pompejana is a deep-sea hydrothermal-vent worm that has been found in temperatures averaging as high as 68 °C, with spikes up to 84 °C. Here, we used Cu,Zn superoxide dismutase (SOD) to test if this eukaryotic thermophile can provide insights into macromolecular mechanisms and stability by supplying better stable mammalian homologs for structural biology and other biophysical characterizations than those from prokaryotic thermophiles. Identification, cloning, characterization, X-ray scattering (small-angle X-ray scattering, SAXS), and crystal structure determinations show that A. pompejana SOD (ApSOD) is superstable, homologous, and informative. SAXS solution analyses identify the human-like ApSOD dimer. The crystal structure shows the active site at 0.99 Å resolution plus anchoring interaction motifs in loops and termini accounting for enhanced stability of ApSOD versus human SOD. Such stabilizing features may reduce movements that promote inappropriate intermolecular interactions, such as amyloid-like filaments found in SOD mutants causing the neurodegenerative disease familial amyotrophic lateral sclerosis or Lou Gehrig's disease. ApSOD further provides the structure of a long-sought SOD product complex at 1.35 Å resolution, suggesting a unified inner-sphere mechanism for catalysis involving metal ion movement. Notably, this proposed mechanism resolves apparent paradoxes regarding electron transfer. These results extend knowledge of SOD stability and catalysis and suggest that the eukaryote A. pompejana provides macromolecules highly similar to those from humans, but with enhanced stability more suitable for scientific and medical applications.  相似文献   

20.
组织蛋白酶及其抑制剂研究进展   总被引:9,自引:0,他引:9  
组织蛋白酶是半胱氨酸蛋白酶家族的主要成员,在生物界已发现20余种,人体中主要存在11种,它们与人类肿瘤、骨质疏松、关节炎等多种重大疾病密切相关,是近年来备受关注的一类靶标蛋白酶。自从20世纪90年代以来,多种组织蛋白酶的晶体结构陆续明确,有关其研究进展较快。本文以人类组织蛋白酶为重点,主要介绍近15年来组织蛋白酶结构、功能和抑制剂研究方面的一些重要进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号