首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trauma and sepsis can cause acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) in part by triggering neutrophil (PMN)-mediated increases in endothelial cell (EC) permeability. We had shown that mitochondrial (mt) damage-associated molecular patterns (DAMPs) appear in the blood after injury or shock and activate human PMN. So we now hypothesized that mitochondrial DAMPs (MTD) like mitochondrial DNA (mtDNA) and peptides might play a role in increased EC permeability during systemic inflammation and proceeded to evaluate the underlying mechanisms. MtDNA induced changes in EC permeability occurred in two phases: a brief, PMN-independent ‘spike’ in permeability was followed by a prolonged PMN-dependent increase in permeability. Fragmented mitochondria (MTD) caused PMN-independent increase in EC permeability that were abolished with protease treatment. Exposure to mtDNA caused PMN-EC adherence by activating expression of adherence molecule expression in both cell types. Cellular activation was manifested as an increase in PMN calcium flux and EC MAPK phosphorylation. Permeability and PMN adherence were attenuated by endosomal TLR inhibitors. EC lacked formyl peptide receptors but were nonetheless activated by mt-proteins, showing that non-formylated mt-protein DAMPs can activate EC. Mitochondrial DAMPs can be released into the circulation by many processes that cause cell injury and lead to pathologic endothelial permeability. We show here that mitochondria contain multiple DAMP motifs that can act on EC and/or PMN via multiple pathways. This can enhance PMN adherence to EC, activate PMN-EC interactions and subsequently increase systemic endothelial permeability. Mitochondrial DAMPs may be important therapeutic targets in conditions where inflammation pathologically increases endothelial permeability.  相似文献   

3.
The mediation of fluid homeostasis by multiple classes of aquaporins has been suggested to be essential during spermatogenesis and spermiation. In the marine teleost gilthead seabream (Sparus aurata), seven distinct aquaporins, Aqp0a, -1aa, -1ab, -7, -8b, -9b and -10b, are differentially expressed in the somatic and germ cell lineages of the spermiating testis, but the endocrine regulation of these channels during germ cell development is unknown. In this study, we investigated the in vivo developmental expression of aquaporins in the seabream testis together with plasma androgen concentrations. We then examined the in vitro regulatory effects of recombinant piscine gonadotropins, follicle-stimulating (rFsh) and luteinizing (rLh) hormones, and sex steroids on aquaporin mRNA levels during the spermatogenic cycle. During the resting phase, when plasma levels of androgens were low, the testis exclusively contained proliferating spermatogonia expressing Aqp1ab, whereas Aqp10b and -9b were localized in Sertoli and Leydig cells, respectively. At the onset of spermatogenesis and during spermiation, the increase of androgen plasma levels correlated with the additional appearance of Aqp0a and -7 in Sertoli cells, Aqp0a in spermatogonia and spermatocytes, Aqp1ab, -7 and -10b from spermatogonia to spermatozoa, and Aqp1aa and -8b in spermatids and spermatozoa. Short-term in vitro incubation of testis explants indicated that most aquaporins in Sertoli cells and early germ cells were upregulated by rFsh and/or rLh through androgen-dependent pathways, although Aqp1ab in proliferating spermatogonia was also activated by estrogens. However, expression of Aqp9b in Leydig cells, and of Aqp1aa and -7 in spermatocytes and spermatids, was also directly stimulated by rLh. These results reveal a complex gonadotropic control of aquaporin expression during seabream germ cell development, apparently involving both androgen-dependent and independent pathways, which may assure the fine tuning of aquaporin-mediated fluid secretion and absorption mechanisms in the seabream testis.  相似文献   

4.
5.
The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.  相似文献   

6.
7.
Under conditions of DNA damage, the mammalian target of rapamycin complex 1 (mTORC1) is inhibited, preventing cell cycle progression and conserving cellular energy by suppressing translation. We show that suppression of mTORC1 signaling to 4E-BP1 requires the coordinated activity of two tumor suppressors, p53 and p63. In contrast, suppression of S6K1 and ribosomal protein S6 phosphorylation by DNA damage is Akt-dependent. We find that loss of either p53, required for the induction of Sestrin 1/2, or p63, required for the induction of REDD1 and activation of the tuberous sclerosis complex, prevents the DNA damage-induced suppression of mTORC1 signaling. These data indicate that the negative regulation of cap-dependent translation by mTORC1 inhibition subsequent to DNA damage is abrogated in most human cancers.  相似文献   

8.
Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a healthy mitochondrial network. In addition, mitochondrial fission and fusion play prominent roles in disease-related processes such as apoptosis and mitophagy. Three members of the Dynamin family are key components of the fission and fusion machineries. Their functions are controlled by different sets of adaptor proteins on the surface of mitochondria and by a range of regulatory processes. Here, we review what is known about these proteins and the processes that regulate their actions.Mitochondrial movement and fission were first observed with light microscopy almost 100 years ago (Lewis and Lewis 1914). For a long time, these observations remained something of a curiosity and they were all but forgotten when electron microscopy popularized the idea that mitochondria exist as isolated sausage-shaped organelles floating in a sea of cytoplasm. Renewed appreciation for mitochondrial dynamics emerged some 20 or 30 years ago when technological advances made it much easier to track mitochondria in live cells. Careful observations, first with phase contrast microscopy, then with vital dyes and finally with targeted fluorescent proteins, showed that mitochondria continually divide and fuse, even in resting cells (Johnson et al. 1981; Bereiter-Hahn and Voth 1994; Rizzuto et al. 1996). Their lengths are determined by the balance between fission and fusion. Mitochondrial morphologies can change dramatically by shifting this balance. In some cells they fuse together, forming a single closed network, whereas in other cells or under different circumstances mitochondria convert into large numbers of small fragments. Because of these morphological changes mitochondria are now known to be very dynamic.The importance of frequent mitochondrial fission and fusion events for cell survival was also not fully appreciated until fairly recently. Obvious reasons, such as accommodating cell growth, cell division, and the redistribution of mitochondria during differentiation, did not fully explain why mitochondria fuse nor did they explain the high frequencies of these occurrences. However, in more recent years, the biological relevance of these phenomena has become clear with the discovery of human diseases that are caused by mutations in fission and fusion proteins and the discovery of numerous connections with apoptosis and mitophagy (Westermann 2010; Chan 2012; Nunnari and Suomalainen 2012; Youle and van der Bliek 2012). Mitochondrial fission and fusion are now considered cornerstones for cell survival because of their contributions to health and disease.  相似文献   

9.
线粒体是一种结构和功能复杂而敏感的细胞器,拥有独立于细胞核的基因组,在细胞的不同时相,生理过程和环境条件下,线粒体的形态,数量和质量,具有高度的可塑性。线粒体是细胞和生物体内最主要的能量供应场所,几乎存在于所有种类的细胞中,是一种动态变化的细胞器。正常情况下,线粒体的数量、形态以及功能维持相对稳定的状态,称之为线粒体稳态。当上述状态发生紊乱时,细胞乃至生物体形态、功能也将受到影响甚至死亡。线粒体质量控制是在细胞中维持正常状态的关键机制,决定着线粒体的命运。近年,随着线粒体研究的深入和具体,逐渐发现融合/分裂在其形态、数量、遗传物质等质量控制相关的方面挥了重要作用。本文通过探讨融合/分裂对线粒体质量控制的作用机制,总结和讨论相关前沿研究,为后期研究提供一定的理论依据。  相似文献   

10.
Mitochondrial homeostasis via mitochondrial dynamics and quality control is crucial to normal cellular functions. Mitophagy (mitochondria removed by autophagy) stimulated by a mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), requires Parkin, but it is not clear why Parkin is crucial to this process. We found that in the absence of Parkin, carbonyl cyanide m-chlorophenylhydrazone induced the formation of mitochondrial spheroids. Mitochondrial spheroid formation is also induced in vivo in the liver by acetaminophen overdose, a condition causing severe oxidative mitochondrial damages and liver injury. Mitochondrial spheroids could undergo a maturation process by interactions with acidic compartments. The formation of this new structure required reactive oxygen species and mitofusins. Parkin suppressed these mitochondrial dynamics by promoting mitofusin degradation. Consistently, genetic deletion of mitofusins without concomitant expression of Parkin was sufficient to prevent mitochondrial spheroid formation and resumed mitophagy. Mitochondrial spheroid formation and mitophagy could represent different strategies of mitochondrial homeostatic response to oxidative stress and are reciprocally regulated by mitofusins and Parkin.  相似文献   

11.
The goal of this review is to highlight recent developments in the field of mitochondrial membrane processes, which provide new insights into the relation between mitochondrial fission/fusion events and the mitochondrial permeability transition (MPT). First, we distinguish between pore opening events at the inner and outer mitochondrial membranes. Inner membrane pore opening, or iMPT, leads to membrane depolarization, release of low molecular weight compounds, cristae reorganization and matrix swelling. Outer membrane pore opening, or oMPT, allows partial release of apoptotic proteins, while complete release requires additional remodeling of inner membrane cristae. Second, we summarize recent data that supports a similar temporal and physical separation between inner and outer mitochondrial membrane fusion events. Finally, we focus on cristae remodeling, which may be the intersection between oMPT and iMPT events. Interestingly, components of fusion machinery, such as mitofusin 2 and OPA1, appear to play a role in cristae remodeling as well. Special issue dedicated to John P. Blass.  相似文献   

12.
Skeletal muscle regeneration is mediated by satellite cells (SCs). Upon injury, SCs undergo self-renewal, proliferation, and differentiation into myoblasts followed by myoblast fusion to form new myofibers. We previously showed that the heparan sulfate (HS) 6-O-endosulfatases (Sulf1 and -2) repress FGF signaling to induce SC differentiation during muscle regeneration. Here, we identify a novel role of Sulfs in myoblast fusion using a skeletal muscle-specific Sulf double null (SulfSK-DN) mouse. Regenerating SulfSK-DN muscles exhibit reduced canonical Wnt signaling and elevated non-canonical Wnt signaling. In addition, we show that Sulfs are required to repress non-canonical Wnt signaling to promote myoblast fusion. Notably, skeletal muscle-relevant non-canonical Wnt ligands lack HS binding capacity, suggesting that Sulfs indirectly repress this pathway. Mechanistically, we show that Sulfs reduce the canonical Wnt-HS binding and regulate colocalization of the co-receptor LRP5 with caveolin3. Therefore, Sulfs may increase the bioavailability of canonical Wnts for Frizzled receptor and LRP5/6 interaction in lipid raft, which may in turn antagonize non-canonical Wnt signaling. Furthermore, changes in subcellular distribution of active focal adhesion kinase (FAK) are associated with the fusion defect of Sulf-deficient myoblasts and upon non-canonical Wnt treatment. Together, our findings uncover a critical role of Sulfs in myoblast fusion by promoting antagonizing canonical Wnt signaling activities against the noncanonical Wnt pathway during skeletal muscle regeneration.  相似文献   

13.
14.
15.
16.
Activation of the dorsomedial nucleus of the hypothalamus (DMH) by galanin (GAL) induces behavioural hyperalgesia. Since DMH neurones do not project directly to the spinal cord, we hypothesized that the medullary dorsal reticular nucleus (DRt), a pronociceptive region projecting to the spinal dorsal horn (SDH) and/or the serotoninergic raphe-spinal pathway acting on the spinal 5-HT3 receptor (5HT3R) could relay descending nociceptive facilitation induced by GAL in the DMH. Heat-evoked paw-withdrawal latency (PWL) and activity of SDH neurones were assessed in monoarthritic (ARTH) and control (SHAM) animals after pharmacological manipulations of the DMH, DRt and spinal cord. The results showed that GAL in the DMH and glutamate in the DRt lead to behavioural hyperalgesia in both SHAM and ARTH animals, which is accompanied particularly by an increase in heat-evoked responses of wide-dynamic range neurons, a group of nociceptive SDH neurones. Facilitation of pain behaviour induced by GAL in the DMH was reversed by lidocaine in the DRt and by ondansetron, a 5HT3R antagonist, in the spinal cord. However, the hyperalgesia induced by glutamate in the DRt was not blocked by spinal ondansetron. In addition, in ARTH but not SHAM animals PWL was increased after lidocaine in the DRt and ondansetron in the spinal cord. Our data demonstrate that GAL in the DMH activates two independent descending facilitatory pathways: (i) one relays in the DRt and (ii) the other one involves 5-HT neurones acting on spinal 5HT3Rs. In experimental ARTH, the tonic pain-facilitatory action is increased in both of these descending pathways.  相似文献   

17.
Brassinosteroids (BRs) are growth-promoting steroid hormones that regulate diverse physiological processes in plants. Most BR biosynthetic enzymes belong to the cytochrome P450 (CYP) family. The gene encoding the ultimate step of BR biosynthesis in Arabidopsis likely evolved by gene duplication followed by functional specialization in a dicotyledonous plant-specific manner. To gain insight into the evolution of BRs, we performed a genomic reconstitution of Arabidopsis BR biosynthetic genes in an ancestral vascular plant, the lycophyte Selaginella moellendorffii. Selaginella contains four members of the CYP90 family that cluster together in the CYP85 clan. Similar to known BR biosynthetic genes, the Selaginella CYP90s exhibit eight or ten exons and Selaginella produces a putative BR biosynthetic intermediate. Therefore, we hypothesized that Selaginella CYP90 genes encode BR biosynthetic enzymes. In contrast to typical CYPs in Arabidopsis, Selaginella CYP90E2 and CYP90F1 do not possess amino-terminal signal peptides, suggesting that they do not localize to the endoplasmic reticulum. In addition, one of the three putative CYP reductases (CPRs) that is required for CYP enzyme function co-localized with CYP90E2 and CYP90F1. Treatments with a BR biosynthetic inhibitor, propiconazole, and epi-brassinolide resulted in greatly retarded and increased growth, respectively. This suggests that BRs promote growth in Selaginella, as they do in Arabidopsis. However, BR signaling occurs through different pathways than in Arabidopsis. A sequence homologous to the Arabidopsis BR receptor BRI1 was absent in Selaginella, but downstream components, including BIN2, BSU1, and BZR1, were present. Thus, the mechanism that initiates BR signaling in Selaginella seems to differ from that in Arabidopsis. Our findings suggest that the basic physiological roles of BRs as growth-promoting hormones are conserved in both lycophytes and Arabidopsis; however, different BR molecules and BRI1-based membrane receptor complexes evolved in these plants.  相似文献   

18.
This review considers the proteins of the WASP (Wiskott-Aldrich syndrome protein) family and their role in the regulation of actin-based motility. It contains detailed classification of the WASP family proteins and data on their subcellular localization. Impairments of expression of the WASP family proteins cause certain cell pathologies. The review also deals with domain organization of these proteins and proteins interacting with various domains of the WASP proteins. Special attention is given to analysis of the role of the WASP family proteins in initiating directed actin assembly in the leading edge of the migrating cell and on the surface of some bacteria. Putative pathways of regulation of WASP proteins by various protein ligands and their links with cell signaling systems are considered.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号