首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of lentiviral Vif proteins is to neutralize the host antiviral cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F). Vif bridges a cullin 5-based E3 ubiquitin ligase with A3G and A3F and mediates their degradation by proteasomes. Recent studies have found that Vif uses different domains to bind to A3G and A3F. A 14DRMR17 domain binds to A3F, 40YRHHY44 binds to A3G, and 69YxxL72 binds to both A3G and A3F. Here, we report another functional domain of Vif. Previously, we demonstrated that human immunodeficiency virus type 1 (HIV-1) Vif failed to mediate A3G proteasomal degradation when all 16 lysines were mutated to arginines. Here, we show that K26, and to a lesser extent K22, is critical for A3G neutralization. K22 and K26 are part of a conserved 21WxSLVK26 (x represents N, K, or H) motif that is found in most primate lentiviruses and that shows species-specific variation. Both K22 and K26 in this motif regulated Vif specificity only for A3G, whereas the SLV residues regulated Vif specificity for both A3F and A3G. Interestingly, SLV and K26 in HIV-1 Vif did not directly mediate Vif interaction with either A3G or A3F. Previously, other groups have reported an important role for W21 in A3F and A3G neutralization. Thus, 21WxSLVK26 is a novel functional domain that regulates Vif activity toward both A3F and A3G and is a potential drug target to inhibit Vif activity and block HIV-1 replication.The replication of human immunodeficiency virus type 1 (HIV-1) is seriously impaired in human primary lymphocytes when the viral protein Vif is not present (8, 38). The first cellular target of Vif was identified as APOBEC3G (A3G) (34), which belongs to the cytidine deaminase family known as APOBEC (apolipoprotein B mRNA-editing catalytic polypeptide) (14). This family consists of APOBEC1; activation-induced deaminase (AID); APOBEC2; a subgroup of APOBEC3 (A3) proteins, including A3A, A3B, A3C, A3DE, A3F, A3G, and A3H; and APOBEC4 in humans (12). They have one or two copies of a cytidine deaminase domain with a signature motif (HxEx23-28PCx2-4C), and normally only one of the cytidine deaminase domains has deaminase activity.All seven A3 genes have been shown to inhibit the replication of various types of retroviruses via cytidine deamination-dependent or -independent mechanisms (3). In particular, A3B, A3DE, A3F, and A3G inhibit HIV-1 replication, whereas A3A and A3C do not (1, 6, 7, 19, 34, 42, 50). Recently, it was shown that optimizing A3H expression in cell culture also inhibits HIV-1 replication (4, 10, 25, 39). Among these proteins, A3G and A3F have the most potent anti-HIV-1 activities. A3G and A3F share ∼50% sequence similarity but have different biochemical properties (41) and different target sequence preferences while catalyzing cytidine deamination of viral cDNAs (19).Nevertheless, HIV-1 is able to elude this defense mechanism and cause human disease for two reasons. First, A3B and A3H are expressed only at low levels in vivo (4, 7, 18, 26). Second, HIV-1 produces Vif, which is expressed in all lentiviruses except equine infectious anemia virus. Vif can destabilize A3DE, A3F, and A3G proteins by targeting them to the proteasomal degradation pathway (6, 22, 35, 37, 50). In addition, Vif may also inhibit A3 activity independently of proteasomal degradation (15, 16, 31).The action of Vif is highly species specific. Vif from HIV-1 inactivates only A3G from humans, and Vif from simian immunodeficiency virus (SIV) isolated from African green monkeys (AGM) does not inactivate A3G from humans. Nevertheless, Vif from SIV isolated from rhesus macaques (MAC) inactivates A3G from all humans, AGM, and MAC (21). A single residue in A3G at position 128, an aspartic acid in humans versus a lysine in AGM, determines A3G sensitivity to HIV-1 Vif (2, 32, 44). In addition, an N-terminal domain in HIV-1 Vif, 14DRMR17, determines Vif specificity for different A3G proteins (33).Vif targets A3G to the proteasome by acting as an adaptor protein that bridges A3G with a cullin 5 (Cul5)-based E3 ubiquitin ligase complex, which includes Cul5, elongin B (EloB), and EloC (46). Vif has a BC box motif (144S145L146Q) that binds to EloC (23, 47) and an HCCH motif (114C/133C) that binds to Cul5 (20, 24, 43). It has also been shown that Vif specifically binds to a region from amino acids 126 to 132 of A3G and to amino acids 283 to 300 of A3F (13, 30). It is believed that as a consequence of these interactions, A3G is polyubiquitylated and directed to 26S proteasomes for degradation.Several domains that determine Vif interactions with A3F and A3G have been identified. Analysis of HIV-1 patient-derived Vif sequences initially found that W11 is essential for A3F recognition and K22, Y40, and E45 are required for A3G recognition (36). The previously identified agmA3G-specific 14DRMR17 domain was also found to determine Vif specificity for A3F (33) by direct binding (29). An A3G-specific binding domain, 40YRHHY44, has also been identified (29), and a 69YxxL72 domain interacts with both A3G and A3F (11, 28, 45).We have previously shown that Vif can mediate A3G proteasomal degradation in the absence of A3G polyubiquitylation and that, unexpectedly, this process is dependent on lysines in Vif (5). Here, we identify two N-terminal lysines that are important for Vif function. We show that these lysines are part of a 21WxSLVK26 motif that is conserved in Vif from primate lentiviruses and that this motif regulates Vif activities against both A3G and A3F via different mechanisms.  相似文献   

2.
Human APOBEC3G (A3G) and APOBEC3F (A3F) inhibit the replication of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif overcomes these host restriction factors by binding to them and inducing their degradation. Thus, the Vif-A3G and Vif-A3F interactions are attractive targets for antiviral drug development, as inhibiting these interactions could allow the host defense mechanism to control HIV-1 replication. Recently, it has been reported that amino acids 105 to 156 of A3G are involved in the interaction with Vif; however, to date, the region of A3F involved in Vif binding has not been identified. Using our previously reported Vif mutants that are capable of binding to only A3G (3G binder) or only A3F (3F binder), in conjunction with a series of A3G-A3F chimeras, we have now mapped the APOBEC3-Vif interaction domains. We found that the A3G domain that interacts with the Vif YRHHY region is located between amino acids 126 and 132 of A3G, which is consistent with the conclusions reported in previous studies. The A3F domain that interacts with the Vif DRMR region did not occur in the homologous domain but instead was located between amino acids 283 and 300 of A3F. These studies are the first to identify the A3F domain that interacts with the Vif DRMR region and show that distinct domains of A3G and A3F interact with different Vif regions. Pharmacological inhibition of either or both of these Vif-A3 interactions should prevent the degradation of the APOBEC3 proteins and could be used as a therapy against HIV-1.  相似文献   

3.
4.
5.
6.
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases.  相似文献   

7.
8.
The human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) potently restrict human immunodeficiency virus type 1 (HIV-1) replication, but they are neutralized by the viral protein Vif. Vif bridges A3G and A3F with a Cullin 5 (Cul5)-based E3 ubiquitin ligase and mediates their proteasomal degradation. This mechanism has been extensively studied, and several Vif domains have been identified that are critical for A3G and A3F neutralization. Here, we identified two additional domains. Via sequence analysis of more than 2,000 different HIV-1 Vif proteins, we identified two highly conserved amino acid sequences, 81LGxGxSIEW89 and 171EDRWN175. Within the 81LGxGxSIEW89 sequence, residues L81, G82, G84, and, to a lesser extent, I87 and W89 play very critical roles in A3G/A3F neutralization. In particular, residues L81 and G82 determine Vif binding to A3F, residue G84 determines Vif binding to both A3G and A3F, and residues 86SIEW89 affect Vif binding to A3F, A3G, and Cul5. Accordingly, this 81LGxGxSIEW89 sequence was designated the 81LGxGxxIxW89 domain. Within the 171EDRWN175 sequence, all residues except N175 are almost equally important for regulation of A3F neutralization, and consistently, they determine Vif binding only to A3F. Accordingly, this domain was designated 171EDRW174. The LGxGxxIxW domain is also partially conserved in simian immunodeficiency virus Vif from rhesus macaques (SIVmac239) and has a similar activity. Thus, 81LGxGxxIxW89 and 171EDRW174 are two novel functional domains that are very critical for Vif function. They could become new targets for inhibition of Vif activity during HIV replication.The function of the lentiviral protein Vif is to neutralize the major host antiretroviral cytidine deaminases that belong to the APOBEC (apolipoprotein B mRNA-editing catalytic polypeptide) family, as recently reviewed by several investigators (18, 29, 31). This family consists of APOBEC1; activation-induced deaminase (AID); APOBEC2; a subgroup of APOBEC3 (A3) proteins, including A3A, A3B, A3C, A3DE, A3F, A3G, and A3H; and APOBEC4 in humans. They have one or two copies of a cytidine deaminase (CDA) domain with a signature motif (HxEx23-28PCx2-4C), only one of which normally has deaminase activity.All seven A3 genes have been shown to inhibit replication of various types of retrovirus via cytidine deamination-dependent or -independent mechanisms. In particular, human A3B, A3DE, A3F, A3G, and A3H inhibit human immunodeficiency virus type 1 (HIV-1) replication, whereas A3A and A3C do not (1, 3, 5, 26, 33, 37). Among these proteins, the expression of human A3G and A3F in vivo has been demonstrated, and in vitro studies indicate that they have the most potent anti-HIV-1 activity. A3G and A3F share ∼50% sequence similarity but have different biochemical properties (32) and different target sequence preferences while catalyzing cytidine deamination of viral cDNAs (13). Expression of human A3B has not been detected (7), and a 29.5-kb deletion spanning from the 3′ end of the A3A gene to the 8th exon of the A3B gene, leading to the complete removal of the A3B gene, has been detected in certain human populations (12). Human A3H is also poorly expressed in vivo (20). It was reported that human A3H has four haplotypes (Hap I, II, III, and IV), and only Hap II, which is maintained primarily in African populations, could be stably expressed in vitro (19). However, expression of this protein has not been detected in any human populations. Thus, the primary function of HIV-1 Vif is to neutralize A3G, A3F, and, to a lesser extent, A3DE.Vif hijacks cellular proteasomal machinery to destroy these host cytidine deaminases by protein degradation (15, 27, 30). Vif acts as an adaptor protein that bridges A3 proteins with a Cullin 5-based E3 ubiquitin ligase complex, which includes Cul5, Elongin B (EloB), and Elongin C (EloC) (35). Vif has a BC-box motif (144SLQYLALA149) that binds to EloC (16, 36) and an HCCH motif (108Hx5Cx17-18Cx3-5H139) that binds to Cul5 (14, 17, 34). On the other hand, Vif also interacts with A3G and A3F. As a consequence of these interactions, A3G and A3F are polyubiquitylated and directed to 26S proteasomes for degradation. In addition, Vif may also inhibit A3 activity independently of proteasomal degradation (10, 11, 24).Interactions between Vif and A3G/A3F are a key step for their proteasomal degradation, and this mechanism has been extensively studied. First, unique surfaces in A3G and A3F important for Vif interaction were identified, and interestingly, they are located in different regions of the two proteins (9, 23). Second, several discontinuous surfaces on Vif have been found to regulate A3G and/or A3F degradation. The 40YRHHY44 domain specifically binds to A3G and determines Vif specificity for A3G (22); the 11WxxDRMR17 and 74TGERxW79 domains specifically bind to A3F and determine Vif specificity for A3F (8, 22); and the 21WxSLVK26, 55VxIPLx4L64, and 69YxxL72domains determine Vif specificity for both A3G and A3F (2, 6, 8, 21). These results indicate that the mechanism that regulates Vif recognition of A3G and A3F is quite complicated, and understanding this mechanism is critical for pharmaceutical protection of A3G and A3F from Vif-mediated proteasomal degradation.Based on our current knowledge of these functional domains, it has been thought that Vif interacts with A3G and A3F mainly via its N-terminal region and with Cul5 E3 ubiquitin ligase machinery via its C-terminal region. However, here we identify a new A3G and A3F regulatory domain from the central region and a new A3F regulatory domain from the C-terminal region of HIV-1 Vif. Our results indicate that A3G and A3F interaction surfaces on HIV-1 Vif are structurally complex, and more efforts are required for a complete understanding of this host-pathogen interactive mechanism.  相似文献   

9.
A nef gene is present in all primate lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus of macaque monkeys (SIVmac). However, the nef genes of HIV-1 and SIVmac exhibit minimal sequence identity, and not all properties are shared by the two. Nef sequences of SIVmac239 were replaced by four independent nef alleles of HIV-1 in a context that was optimal for expression. The sources of the HIV-1 nef sequences included NL 4-3, a variant NL 4-3 gene derived from a recombinant-infected rhesus monkey, a patient nef allele, and a nef consensus sequence. Of 16 rhesus monkeys infected with these SHIVnef chimeras, 9 maintained high viral loads for prolonged periods, as observed with the parental SIVmac239, and 6 have died with AIDS 52 to 110 weeks postinfection. Persistent high loads were observed at similar frequencies with the four different SIV recombinants that expressed these independent HIV-1 nef alleles. Infection with other recombinant SHIVnef constructions resulted in sequence changes in infected monkeys that either created an open nef reading frame or optimized the HIV-1 nef translational context. The HIV-1 nef gene was uniformly retained in all SHIVnef-infected monkeys. These results demonstrate that HIV-1 nef can substitute for SIVmac nef in vivo to produce a pathogenic infection. However, the model suffers from an inability to consistently obtain persisting high viral loads in 100% of the infected animals, as is observed with the parental SIVmac239.  相似文献   

10.
Effective strategies are needed to block mucosal transmission of human immunodeficiency virus type 1 (HIV-1). Here, we address a crucial question in HIV-1 pathogenesis: whether infected donor mononuclear cells or cell-free virus plays the more important role in initiating mucosal infection by HIV-1. This distinction is critical, as effective strategies for blocking cell-free and cell-associated virus transmission may be different. We describe a novel ex vivo model system that utilizes sealed human colonic mucosa explants and demonstrate in both the ex vivo model and in vivo using the rectal challenge model in rhesus monkeys that HIV-1-infected lymphocytes can transmit infection across the mucosa more efficiently than cell-free virus. These findings may have significant implications for our understanding of the pathogenesis of mucosal transmission of HIV-1 and for the development of strategies to prevent HIV-1 transmission.  相似文献   

11.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary blood-derived lymphocytes, macrophages, and certain human T-cell lines. It has been shown that Vif is associated with HIV-1 virions purified by sucrose density-equilibrium gradient analysis. However, the specificity of Vif incorporation into virions has not been determined. Moreover, recent studies have demonstrated that standard HIV-1 particle preparations created with sucrose density-equilibrium gradients are contaminated with cell-derived microvesicles. Here we demonstrate, as previously reported, that Vif cosediments with HIV-1 particles in sucrose density-equilibrium gradient analysis. However, we also found that, when Vif was expressed in the absence of all other HIV-1-encoded gene products and then isolated by sucrose density-equilibrium gradient centrifugation from extracellular supernatants, its sedimentation pattern was largely unaltered, suggesting that Vif can be secreted from cells. Using a newly developed OptiPrep velocity gradient method, we were able to physically separate most of the extracellular Vif from the HIV-1 virions without disrupting the infectivity of the virus. By titrating serial dilutions of purified Vif and Gag against the viral peak fraction in the OptiPrep gradient, we demonstrate that <1.0 Vif molecule per virion was present. This study shows that Vif is not significantly present in HIV-1 virions, a finding which is consistent with the idea that Vif functions predominantly in the virus-producing cells during virus assembly. The OptiPrep velocity gradient technique described here could be an easy and rapid way to purify HIV and other enveloped viruses from microvesicles and/or cell debris.  相似文献   

12.
Characterization of virus-specific immune responses to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) is important to understanding the early virus-host interactions that may determine the course of virus infection and disease. Using a comprehensive panel of serological assays, we have previously demonstrated a complex and lengthy maturation of virus-specific antibody responses elicited by attenuated strains of SIV that was closely associated with the development of protective immunity. In the present study, we expand these analyses to address several questions regarding the nature of the virus-specific antibody responses to pathogenic SIV, SIV/HIV-1 (SHIV), and HIV-1 infections. The results demonstrate for the first time a common theme of antibody maturation to SIV, SHIV, and HIV-1 infections that is characterized by ongoing changes in antibody titer, conformational dependence, and antibody avidity during the first 6 to 10 months following virus infection. We demonstrate that this gradual evolution of virus-specific antibody responses is independent of the levels of virus replication and the pathogenicity of the infection viral strain. While the serological assays used in these studies were useful in discriminating between protective and nonprotective antibody responses during evaluation of vaccine efficacy with attenuated SIV, these same assays do not distinguish the clinical outcome of infection in pathogenic SIV, SHIV, or HIV-1 infections. These results likely reflect differences in the immune mechanisms involved in mediating protection from virus challenge compared to those that control an established viral infection, and they suggest that additional characteristics of both humoral and cellular responses evolve during this early immune maturation.  相似文献   

13.
14.
15.
Zhang W  Huang M  Wang T  Tan L  Tian C  Yu X  Kong W  Yu XF 《Cellular microbiology》2008,10(8):1662-1675
Human cytidine deaminase APOBEC3C (A3C) acts as a potent inhibitor of SIVagm and can be regulated by both HIV-1 and SIVagm Vif. The mechanism by which Vif suppresses A3C is unknown. In the present study, we demonstrate that both HIV-1 and SIVagm Vif can act in a proteasome-dependent manner to overcome A3C. SIVagm Vif requires the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase for the degradation of A3C as well as the suppression of its antiviral activity. Mutation of a residue critical for the species-specific recognition of human or monkey A3G by HIV-1 Vif or SIVagm Vif in A3C had little effect on HIV-1 or SIVagm Vif-mediated degradation of A3C. Although the amino-terminal region of A3G was not important for Vif-mediated degradation, the corresponding region in A3C was critical. A3C mutants that were competent for Vif binding but resistant to Vif-mediated degradation were identified. These data suggest that primate lentiviral Vif molecules have evolved to recognize multiple host APOBEC3 proteins through distinct mechanisms. However, Cul5-E3 ubiquitin ligase appears to be a common pathway hijacked by HIV-1 and SIV Vif to defeat APOBEC3 proteins. Furthermore, Vif and APOBEC3 binding is not sufficient for target protein degradation indicating an important but uncharacterized Vif function.  相似文献   

16.
17.
18.
Inactivation of progeny virions with chimeric virion-associated proteins represents a novel therapeutic approach against human immunodeficiency virus (HIV) replication. The HIV type 1 (HIV-1) Vpr gene product, which is packaged into virions, is an attractive candidate for such a strategy. In this study, we developed Vpr-based fusion proteins that could be specifically targeted into mature HIV-1 virions to affect their structural organization and/or functional integrity. Two Vpr fusion proteins were constructed by fusing to the first 88 amino acids of HIV-1 Vpr the chloramphenicol acetyltransferase enzyme (VprCAT) or the last 18 C-terminal amino acids of the HIV-1 Vpu protein (VprIE). These Vpr fusion proteins were initially designed to quantify their efficiency of incorporation into HIV-1 virions when produced in cis from the provirus. Subsequently, CD4+ Jurkat T-cell lines constitutively expressing the VprCAT or the VprIE fusion protein were generated with retroviral vectors. Expression of the VprCAT or the VprIE fusion protein in CD4+ Jurkat T cells did not interfere with cellular viability or growth but conferred substantial resistance to HIV replication. The resistance to HIV replication was more pronounced in Jurkat-VprIE cells than in Jurkat-VprCAT cells. Moreover, the antiviral effect mediated by VprIE was dependent on an intact p6gag domain, indicating that the impairment of HIV-1 replication required the specific incorporation of Vpr fusion protein into virions. Gene expression, assembly, or release was not affected upon expression of these Vpr fusion proteins. Indeed, the VprIE and VprCAT fusion proteins were shown to affect the infectivity of progeny virus, since HIV virions containing the VprCAT or the VprIE fusion proteins were, respectively, 2 to 3 times and 10 to 30 times less infectious than the wild-type virus. Overall, this study demonstrated the successful transfer of resistance to HIV replication in tissue cultures by use of Vpr-based antiviral genes.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) subtype C is responsible for more than 56% of all infections in the HIV and AIDS pandemic. It is the predominant subtype in the rapidly expanding epidemic in southern Africa. To develop a relevant model that would facilitate studies of transmission, pathogenesis, and vaccine development for this subtype, we generated SHIV(MJ4), a simian/human immunodeficiency virus (SHIV) chimera based on HIV-1 subtype C. SHIV(MJ4) contains the majority of env, the entire second exon of tat, and a partial sequence of the second exon of rev, all derived from a CCR5-tropic, primary isolate envelope clone from southern Africa. SHIV(MJ4) replicated efficiently in human, rhesus, and pig-tailed macaque peripheral blood mononuclear cells (PBMCs) in vitro but not in CEMx174 cells. To assess in vivo infectivity, SHIV(MJ4) was intravenously inoculated into four rhesus macaques (Macaca mulatta). All four animals became infected as determined through virus isolation, PCR analysis, and viral loads of 10(7) to 10(8) copies of viral RNA per ml of plasma during the primary infection phase. We have established a CCR5-tropic SHIV(MJ4)/rhesus macaque model that may be useful in the studies of HIV-1 subtype C immunology and biology and may also facilitate the evaluation of vaccines to control the spread of HIV-1 subtype C in southern Africa and elsewhere.  相似文献   

20.

Background

APOBEC3G (A3G) and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized.

Methods and Findings

In the present study, we have demonstrated that the regions of APOBEC3F (A3F) that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD) of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE.

Conclusions

Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号