共查询到4条相似文献,搜索用时 0 毫秒
1.
Changes in the subcellular distribution of glutathione during virus infection in Cucurbita pepo (L.)
Changes in the subcellular distribution and quantification of glutathione were studied with electron microscopic immunogold cytochemistry in Zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants (Cucurbita pepo L. ssp. pepo var. styriaca Greb.) two weeks after inoculation. The amount of gold particles bound to glutathione was statistically evaluated for different cell structures, including mitochondria, plastids, nuclei, peroxisomes, and cytosol. In general, ZYMV-infected plants showed higher gold labelling density in intact mesophyll cells of the 5th (older leaves) and the youngest fully developed leaves (younger leaves), and decreased levels of glutathione within root tip cells when compared to the control. In general, within older and younger leaves the highest amount of gold particles was found in mitochondria and the lowest amount in plastids. In ZYMV-infected older leaves, an increase in glutathione was found in peroxisomes (1.7-fold), the cytosol (1.6-fold), mitochondria (1.4-fold), and nuclei (1.2-fold), whereas glutathione levels in plastids did not differ significantly when compared to control cells. In ZYMV-infected younger leaves elevated glutathione contents were found in the cytosol (3-fold), nuclei (2.1-fold), peroxisomes (1.8-fold), and plastids (1.5-fold), whereas mitochondria showed an insignificant decrease in glutathione levels in comparison to the control. In root tip cells of ZYMV-infected plants the amount of gold particles bound to glutathione was decreased in all investigated cell structures by between 0.7- to 0.8-fold. Additionally, total glutathione contents were determined in older and younger leaves using high-performance liquid chromatography (HPLC), which revealed no significant differences between control and ZYMV-infected leaves. The relevance of the results of both methods were compared and are discussed. 相似文献
2.
Hayes CN Winsor JA Stephenson AG 《Evolution; international journal of organic evolution》2005,59(2):276-286
The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis. 相似文献
3.
P. K. Diggle N. J. Abrahamson R. L. Baker M. G. Barnes T. L. Koontz C. R. Lay J. S. Medeiros J. L. Murgel M. G. M. Shaner H. L. Simpson C. C. Wu D. L. Marshall 《Annals of botany》2010,106(2):309-319
Background and Aims
Variability in embryo development can influence the rate of seed maturation and seed size, which may have an impact on offspring fitness. While it is expected that embryo development will be under maternal control, more controversial hypotheses suggest that the pollen donor and the embryo itself may influence development. These latter possibilities are, however, poorly studied. Characteristics of 10-d-old embryos and seeds of wild radish (Raphanus sativus) were examined to address: (a) the effects of maternal plant and pollen donor on development; (b) the effects of earlier reproductive events (pollen tube growth and fertilization) on embryos and seeds, and the influence of embryo size on mature seed mass; (c) the effect of water stress on embryos and seeds; (d) the effect of stress on correlations of embryo and seed characteristics with earlier and later reproductive events and stages; and (e) changes in maternal and paternal effects on embryo and seed characteristics during development.Methods
Eight maternal plants (two each from four families) and four pollen donors were crossed and developing gynoecia were collected at 10 d post-pollination. Half of the maternal plants experienced water stress. Characteristics of embryos and seeds were summarized and also compared with earlier and later developmental stages.Key Results
In addition to the expected effects of the maternal plants, all embryo characters differed among pollen donors. Paternal effects varied over time, suggesting that there are windows of opportunity for pollen donors to influence embryo development. Water-stress treatment altered embryo characteristics; embryos were smaller and less developed. In addition, correlations of embryo characteristics with earlier and later stages changed dramatically with water stress.Conclusions
The expected maternal effects on embryo development were observed, but there was also evidence for an early paternal role. The relative effects of these controls may change over time. Thus, there may be times in development when selection on the maternal, paternal or embryo contributions to development are more and less likely. 相似文献4.
The effects of rearing density and maternal age on the progeny size, number and coloration of the desert locust, Schistocerca gregaria, were investigated. Isolated-reared females deposited smaller, but more eggs than crowd-reared females. The former produced smaller and more eggs with age, whereas the latter showed a tendency to produce larger and fewer eggs over time. A similar tendency was also observed with virgin females, indicating that mating or the presence of males was not important. The first egg pod produced by each mated crowd-reared female contained significantly smaller and more eggs than did the subsequent egg pods. The former often produced many green hatchlings (0-100%) characteristic of solitarious forms, whereas the egg pods deposited after the first pod produced predominantly black hatchlings typical of gregarious forms. Adults were highly sensitive to a shift in rearing density and quickly modified the quality and quantity of their progeny depending on the density encountered. The number of eggs per pod was influenced not only by the mother's rearing density but also by rearing density of the grandmother. The present results demonstrated that the characteristics of progeny are influenced not only by the crowding conditions experienced by the mother and grandmother but also by the mother's reproductive cycle. 相似文献