首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA clone encoding an ascorbate peroxidase was isolated from the cDNA library from halotolerant Chlamydomonas W80 by a simple screening method based on the bacterial expression system. The cDNA clone contained an open reading frame encoding a mature protein of 282 amino acids with a calculated molecular mass of 30,031 Da, preceded by the chloroplast transit peptide consisting of 37 amino acids. In fact, ascorbate peroxidase was localized in the chloroplasts of Chlamydomonas W80 cells; the activity was detected in the stromal fraction but not in the thylakoid membrane. The deduced amino acid sequence of the cDNA showed 54 and 49% homology to chloroplastic and cytosolic ascorbate peroxidase isoenzymes of spinach leaves, respectively. The enzyme from Chlamydomonas W80 cells was purified to electrophoretic homogeneity. The molecular properties of the purified enzyme were similar to those of the other algal ascorbate peroxidases rather than those of ascorbate peroxidases from higher plants. The enzyme was relatively stable in ascorbate-depleted medium compared with the chloroplastic ascorbate peroxidase isoenzymes of higher plants. The presence of NaCl (3%) as well as of beta-d-thiogalactopyranoside was needed for the expression of Chlamydomonas W80 ascorbate peroxidase in Escherichia coli.  相似文献   

2.
Ascorbate specific peroxidase in chloroplasts was purified fromspinach leaves. Spinach chloroplast peroxidase was a monomerwith a molecular weight of about 30,000 and showed an absorptionspectrum similar to a hemoprotein. The enzyme lost its activitywithin a minute in the absence of ascorbate under aerobic conditions.In addition to ascorbate, 20% sorbitol was necessary to stabilizethe enzyme. The inactivation of the enzyme in the ascorbate-depletedmedium was protected by other electron donors, pyrogallol, guaiacoland pyrocatechol, whose oxidation rates were very low comparedwith that of ascorbate. The inactivated enzyme recovered itsactivity with monodehydroascorbate radicals generated by theascorbate-ascorbate oxidase system. A mechanism of inactivationand reactivation of ascorbate peroxidase is proposed. (Received August 28, 1986; Accepted November 13, 1986)  相似文献   

3.
The hydrogen peroxide that is photoproduced in thylakoids isscavenged by the thylakoid-bound ascorbate peroxidase (tAPX)[Miyake and Asada (1992) Plant Cell Physiol. 33: 541]. tAPXwas purified from spinach thylakoids to homogeneity as judgedby SDS-polyacrylamide gel electrophoresis, and its molecularproperties were studied. Spinach tAPX was a monomer with a molecularweight of 40,000, which is about 10,000 higher than that ofthe stromal ascorbate peroxidase (sAPX) from spinach chloroplasts.tAPX cross-reacted with the antibody raised against sAPX fromtea leaves, as determined by Western blotting, which also providedevidence for the higher molecular weight of tAPX from spinachthylakoids than that of tea sAPX. The amino acid sequence ofthe amino-terminal region of tAPX showed a low degree of homologyto those of cytosolic APXs from spinach, pea and Arabidopsisthaliana, but a high degree of homology to that of stromal APXfrom tea. Thus, the amino-terminal region of tAPX seems notto be a domain required for binding of the enzyme to the thylakoidmembranes. tAPX contained protoheme IX, as identified by itspyridine hemochromogen, and gave a Soret peak at 403 nm and433 nm with an a band at 555 nm in its oxidized and reducedforms, respectively. Resembling sAPX but differing from cytosolicAPX, tAPX showed high specificity for ascorbate as the electrondonor. tAPX was inhibited by cyanide, thiol-modifying reagents,thiols and several suicide inhibitors, such as hydroxyurea andp-aminophenol. 1Present address: Beijing Vegetable Research Centre, PO Box2443, Beijing, China.  相似文献   

4.
The chloroplastic isoform of monodehydroascorbate (MDA) radical reductase was purified from spinach chloroplasts and leaves. The cDNA of chloroplastic MDA reductase was cloned, and its deduced amino acid sequence, consisting of 497 residues, showed high homology with those of putative organellar MDA reductases deduced from cDNAs of several plants. The amino acid sequence of the amino terminal of the purified enzyme suggested that the chloroplastic enzyme has a transit peptide consisting of 53 residues. A southern blot analysis suggested the occurrence of a gene encoding another isoform homologous to the chloroplastic isoform in spinach. The recombinant enzyme was highly expressed in Eschericia coli using the cDNA, and purified to a homogeneous state with high specific activity. The enzyme properties of the chloroplastic isoform are presented in comparison with those of the cytosolic form.  相似文献   

5.
Cytosolic Ascorbate Peroxidase in Seedlings and Leaves of Maize (Zea mays)   总被引:2,自引:0,他引:2  
Ascorbate peroxidase (APX) was purified to homogeneity frommaize (Zea mays L. cv.) coleoptiles. APX was a monomer witha molecular mass of 28 kDa, as determined by gel nitration andSDS-polyacrylamide gel electrophoresis. It contained one protohememoiety per molecule, with the oxidized form giving a Soret peakat 403 nm with small peaks at 502 and 638 nm, and the reducedform giving peaks at 435 and 556 nm. The enzyme was not inactivatedby depletion of ascorbate. Cell fractionation and immunohistochemicalstudies using polyclonal antibodies raised against maize APXrevealed that the enzyme was not located in the chloroplastsof green leaves. It was abundant in the cytoplasm but not inthe vacuoles of cells in the coleoptile, mesocotyl and youngleaves of seedlings. In mature green leaves, small amounts ofthe enzyme were distributed in vascular systems, in particularin the companion cells. The N-terminal amino acid sequence ofmaize APX exhibited high homology to pea cytosolic APX, spinachAPX and Arabidopsis APX, but not to APX from tea chloroplasts. (Received February 15, 1993; Accepted May 6, 1993)  相似文献   

6.
A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against superoxide generated during illumination of leaf discs impregnated with methyl viologen. By contrast, overproduction of a mitochondrial MnSOD from Nicotiana plumbaginifolia in the chloroplasts of cv SR1 protected only the plasmalemma, but not photosystem II, against methyl viologen (L. Slooten, K. Capiau, W. Van Camp, M. Van Montagu, C. Sybesma, D. Inzé [1995] Plant Physiol 107: 737-750). The difference in effectiveness correlates with different membrane affinities of the transgenic FeSOD and MnSOD. Overproduction of FeSOD does not confer tolerance to H2O2, singlet oxygen, chilling-induced photoinhibition in leaf disc assays, or to salt stress at the whole plant level. In nontransgenic plants, salt stress led to a 2- to 3-fold increase in activity, on a protein basis, of FeSOD, cytosolic and chloroplastic Cu/ZnSOD, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. In FeSOD-overproducing plants under salt stress, the induction of cytosolic and chloroplastic Cu/ZnSOD was suppressed, whereas induction of a water-soluble chloroplastic ascorbate peroxidase isozyme was promoted.  相似文献   

7.
Ruptured pea (Pisum sativum cv. Massey Gem) chloroplasts exhibited ascorbate peroxidase activity as determined by H2O2-dependent oxidation of ascorbate and ascorbate-dependent reduction of H2O2. The ratio of ascorbate peroxidase to NADP-glyceraldehyde 3-phosphate dehydrogenase activity was constant during repeated washing of isolated chloroplasts. This indicates that the ascorbate peroxidase is a chloroplast enzyme. The pH optimum of ascorbate peroxidase activity was 8.2 and the Km value for ascorbate was 0.6 millimolar. Pyrogallol, glutathione, and NAD(P)H did not substitute for ascorbate in the enzyme catalyzed reaction. The enzyme was inhibited by NaN3, KCN, and 8-hydroxyquinoline but not ZnCl2 or iodoacetate. The ascorbate peroxidase activity of sonicated chloroplasts was inhibited by light but not in the presence of substrate concentrations of ascorbate.  相似文献   

8.
Soluble acyl-CoA:sn-glycerol 3-phosphate acyltransferases (EC 2.3.1.15) which are localized in chloroplasts were purified from leaves of Pisum sativum and Spinacia oleracea and obtained free from interfering activities. The purification raised the specific activities by factors of about 1,000 for pea and 200 for spinach preparations. In pea chloroplasts, acyltransferase activity occurs in two soluble forms with apparent isoelectric points of 6.3 and 6.6. For both forms, the same molecular weight of about 42,000 was determined. The enzyme from spinach chloroplasts showed a slightly higher molecular weight and a lower isoelectric point of 5.2.  相似文献   

9.
A cytosolic form of dihydroxyacetone phosphate (DHAP) reductase was purified 200,000-fold from spinach (Spinacia oleracea L.) leaves to apparent electrophoretic homogeneity. The purification procedure included anion-exchange chromatography, gel filtration, hydrophobic chromatography, and dye-ligand chromatography on Green-A and Red-A agaroses. The enzyme, prepared in an overall yield of 14%, had a final specific activity of about 500 μmol of DHAP reduced min−1 mg−1 protein, a subunit molecular mass of 38 kD, and a native molecular mass of 75 kD. A chloroplastic isoform of DHAP reductase was separated from the cytosolic form by anion-exchange chromatography and partially purified 56,000-fold to a specific activity of 135 μmol min−1 mg−1 protein. Antibodies generated in rabbits against the cytosolic form did not cross-react with the chloroplastic isoform. The two reductases were specific for NADH and DHAP. Although they exhibited some dissimilarities, both isoforms were severely inhibited by higher molecular weight fatty acyl coenzyme A esters and phosphohydroxypyruvate and moderately inhibited by nucleotides. In contrast to previous reports, the partially purified chloroplastic enzyme was not stimulated by dithiothreitol or thioredoxin, nor was the purified cytosolic enzyme stimulated by fructose 2,6-bisphosphate. A third DHAP reductase isoform was isolated from spinach leaf peroxisomes that had been prepared by isopycnic sucrose density gradient centrifugation. The peroxisomal DHAP reductase was sensitive to antibodies raised against the cytosolic enzyme and had a slightly smaller subunit molecular weight than the cytosolic isoform.  相似文献   

10.
A cDNA clone encoding the cytosolic ascorbate peroxidase of pea (Pisum sativum L.) was isolated and its nucleotide sequence determined. While ascorbate peroxidase shares limited overall homology with other peroxidases, significant homology with all known peroxidases was found in the vicinity of the putative active site.  相似文献   

11.
Ascorbate peroxidase (APX) of the liverwort Pallavicinia lyelli was extracted and purified through ammonium sulfate precipitation, Butyl-Toyopearl, DEAE-Cellulofine and Sephadex G-75 chromatography. The purification factor for APX was 285 with 7.9% yield. The enzyme was characterized for thermal stability, pH and kinetic parameters. The molecular mass of APX was approximately 28 kDa estimated by SDS-PAGE. The purity was checked by native PAGE, showing a single prominent band. The optimum pH was 6.0. The enzyme had a temperature optimum at 40 °C and was relatively stable at 60 °C, with 54% loss of activity. When the enzyme was diluted with the ascorbate-deleted medium, the half inactivation time was approximately 15 min. The absorption spectra of the purified enzyme and the inhibition by cyanide and azide showed that it is a hemoprotein. Spectral analysis and inhibitor studies were consistent with the presence of a heme moiety. When compared with ascorbate peroxidase activity derived from ruptured intact chloroplasts, the purified enzyme was found to have a higher stability, a broader pH optimum for activity and the capacity to utilize alternate electron donors. p-chloromercuribenzoate (pCMB), hydroxyurea and salicylic acid (SA) significantly inhibited APX activity. Ascorbate (AsA) and pyrogallol were found to be efficient substrates for Pallavicinia APX, considering the Vmax/Km ratio. We detected the activity of monodehydroascorbate reductase (MDHAR) involved in the regeneration of ascorbate, but failed to detect the dehydroascorbate reductase (DHAR) activity. The data obtained in this study may help to understand desiccation tolerance mechanism in the liverwort.  相似文献   

12.
Jens Lübeck  Jürgen Soll 《Planta》1995,196(4):668-673
Nucleoside diphosphate kinase (NDPK; EC 2.7.4.6) was enriched 1900-fold from purified pea (Pisum sativum L. cv. Golf.) chloroplasts. The active enzyme preparation contained two polypeptides of apparent molecular weight 18.5 kDa and 17.4kDa. Both proteins were enzymatically active and were recognized by an antiserum raised against NDPK from spinach chloroplasts, suggesting the existence of two isoforms in pea chloroplasts. The N-terminal protein sequence data were obtained for both polypeptides and compared with the nucleotide sequence of a cDNA clone isolated from a pea cDNA library. The analysis revealed that the two NDPK forms are encoded for by one mRNA, indicating that the lower-molecular-weight form could represent a proteolytic breakdown product of the 18.5-kDa NDPK. The pea chloroplastic NDPK is made as a larger precursor protein which is imported into chloroplasts. The NDPK precursor is then processed by the stromal processing peptidase to yield the 18.5-kDa form.Abbreviations NDPK nucleoside diphosphate kinase - preNDPK precursor NDPK - ps-NDPK cDNA coding for Pisum sativum NDPK II We thank Dr. Schmidt, University Göttingen, Germany, for doing the protein sequencing. This work was supported in part by grants from the Deutsche Forschungsgemeinschaft.  相似文献   

13.
Ascorbate peroxidase isoforms localized in the stroma and thylakoid of higher plant chloroplasts are rapidly inactivated by hydrogen peroxide if the second substrate, ascorbate, is depleted. However, cytosolic and microbody-localized isoforms from higher plants as well as ascorbate peroxidase B, an ascorbate peroxidase of a red alga Galdieria partita, are relatively tolerant. We constructed various chimeric ascorbate peroxidases in which regions of ascorbate peroxidase B, from sites internal to the C-terminal end, were exchanged with corresponding regions of the stromal ascorbate peroxidase of spinach. Analysis of these showed that a region between residues 245 and 287 was involved in the inactivation by hydrogen peroxide. A 16-residue amino acid sequence (249-264) found in this region of the stromal ascorbate peroxidase was not found in other ascorbate peroxidase isoforms. A chimeric ascorbate peroxidase B with this sequence inserted was inactivated by hydrogen peroxide within a few minutes. The sequence forms a loop that binds noncovalently to heme in cytosolic ascorbate peroxidase of pea but does not bind to it in stromal ascorbate peroxidase of tobacco, and binds to cations in both ascorbate peroxidases. The higher susceptibility of the stromal ascorbate peroxidase may be due to a distorted interaction of the loop with the cation and/or the heme.  相似文献   

14.
Ascorbate peroxidase,a haem protein (EC 1.11.1.11),efficiently scavenges hydrogen peroxide (H2O2) in cytosol and chloroplasts of plants.In this study,a fulllength coding sequence of thylakoid-bound ascorbate peroxidase cDNA (TatAPX) was cloned from a drought tolerant wheat cultivar C306.Homology modeling of the TatAPX protein was performed by using the template crystal structure of chloroplastic ascorbate peroxidase from tobacco plant (PDB: 1IYN).The model structure was further refined by molecular mechanic...  相似文献   

15.
The controversial question of the intracellular location of manganese-containing superoxide dismutase in higher plants was examined under a new experimental approach by applying the more rigorous and specific methods of immunocytochemistry to protoplasts isolated fromPisum sativum L. leaves. Manganese superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from 15 kg of leaves ofPisum sativum L. Rabbits were immunized with the mangano enzyme and the antibody specific for pea manganese superoxide dismutase was purified and found not to contain antigenic sites in common with (i) human manganese superoxide dismutase, (ii) iron superoxide dismutase from eitherEscherichia coli or higher plants, or (iii) plant or animal cuprozinc-superoxide dismutase.Pisum sativum L. manganese superoxide dismutase only appears to have antigenic determinants similar to other manganese superoxide dismutases from higher land plants. The antibody to pea Mn-superoxide dismutase was used to locate the enzyme in protoplasts isolated from young pea leaves by indirect immunofluorescence, and by electron microscopy using the unlabelled antibody peroxidase-antiperoxidase method. Results from immunofluorescence showed that chloroplasts were devoid of specific fluorescence which appeared scattered over the cytosolic spaces among chloroplasts, and demonstrate the absence of manganese superoxide dismutase inside chloroplasts. The metalloenzyme was found to be localized only in peroxisomes, whereas mitochondria, the traditionally accepted site for this enzyme in many eukaryotic organisms, did not show any specific staining. The possible subcellular roles of manganese superoxide dismutase inPisum sativum L. leaves are discussed in the light of its peroxisomal location.  相似文献   

16.
Pea (Pisum sativum L.) chloroplastic phosphoriboisomerase (EC 5.3.1.6) can be purified to apparent homogeneity in less than 2 days time with a 53% yield. Important steps in the purification include heat treatment and pseudoaffinity chromatography on Red H-3BN Sepharose. The purified isomerase has a subunit molecular mass of 26.4 kD. The N-terminal sequence has been determined through 34 residues. pH optima are 7.8 (ribose-5-phosphate) and 7.7 (ribulose-5-phosphate); Km values are 0.9 millimolar (ribose-5-phosphate) and 0.6 millimolar (ribulose-5-phosphate). The enzyme is inhibited by erythrose-4-phosphate, sedoheptulosebisphosphate, glyceraldehyde-3-phosphate, and 3-phosphoglycerate at concentrations close to those found in photosynthesizing chloroplasts. Countercurrent phase partitioning experiments indicate that the pea chloroplastic phosphoriboisomerase interacts physically with phosphoribulokinase.  相似文献   

17.
In spinach thylakoids prepared from intact chloroplasts by shocking in the presence of ascorbate to preserve the operation of ascorbate peroxidase, the rate of oxygen uptake with methyl viologen as acceptor decreased in response to the addition of H2O2. Such a decrease was not observed in the presence of KCN or when the thylakoids lost ascorbate peroxidase activity. Illumination of intact chloroplasts in the presence of H2O2 and methyl viologen showed an initial rate of oxygen exchange, which is intermediate between the initial rate of oxygen evolution in the presence of H2O2 alone and steady-state oxygen uptake in the presence of methyl viologen. The data showed that monodehydroascorbate radical generated in ascorbate peroxidase reaction could compete with methyl viologen for electrons supplied by the electron transport chain in both thylakoids and intact chloroplasts. During the illumination of intact chloroplasts the rate of oxygen uptake increased. The presence of nigericin swiftly led to steady-state oxygen uptake, and to a clear-cut 1:1 relationship between the electron transport rate estimated from fluorescence assay and the electron transport rate determined from oxygen uptake, taking the stoichiometry 1O2:4e. The increase in oxygen uptake was attributed to the cessation of monodehydroascorbate radical generation brought about by consumption of intrachloroplast ascorbate in the peroxidase reactions, and the effects of nigericin were explained by acceleration of such consumption. The competition between methyl viologen and monodehydroascorbate radical in the intact chloroplasts was estimated under various conditions.  相似文献   

18.
Ascorbate peroxidase is a hydrogen peroxide-scavenging enzyme that is specific to plants and algae and is indispensable to protect chloroplasts and other cell constituents from damage by hydrogen peroxide and hydroxyl radicals produced from it. In this review, first, the participation of ascorbate peroxidase in the scavenging of hydrogen peroxide in chloroplasts is briefly described. Subsequently, the phylogenic distribution of ascorbate peroxidase in relation to other hydrogen peroxide-scavenging peroxidases using glutathione, NADH and cytochrome c is summarized. Chloroplastic and cytosolic isozymes of ascorbate peroxidase have been found, and show some differences in enzymatic properties. The basic properties of ascorbate peroxidases, however, are very different from those of the guaiacol peroxidases so far isolated from plant tissues. Amino acid sequence and other molecular properties indicate that ascorbate peroxidase resembles cytochrome c peroxidase from fungi rather than guaiacol peroxidase from plants, and it is proposed that the plant and yeast hydrogen peroxide-scavenging peroxidases have the same ancestor.  相似文献   

19.
A Scots pine (Pinus sylvestris L.) cDNA library was screened with two heterologous cDNA probes (P31 and T10) encoding cytosolic and chloroplastic superoxide dismutases (SOD) from tomato. Several positive clones for cytosolic and chloroplastic superoxide dismutases were isolated, subcloned, mapped and sequenced. One of the cDNA clones (PS3) had a full-length open reading frame of 465 bp corresponding to 154 amino acid residues and showed approximately 85% homology with the amino acid sequences of angiosperm cytosolic SOD counterparts. Another cDNA clone (PST13) was incomplete, but encoded a putative protein with 93% homology to pea and tomato chloroplastic superoxide dismutase. The derived amino acid sequence from both cDNA clones matched the corresponding N-terminal amino acid sequence of the purified mature SOD isozymes. Northern blot hybridizations showed that, cytosolic and chloroplastic CuZn-SOD are expressed at different levels in Scots pine organs. Sequence data and Southern blot hybridization confirm that CuZn-SODs in Scots pine belong to a multigene family. The results are discussed in relation to earlier observations of CuZn-SODs in plants.  相似文献   

20.
A novel membrane lipoxygenase (LOX; EC 1.13.11.12) from eggplant ( Solanum melongena L. cv. Belleza negra) fruit chloroplasts has been purified 20-fold to a specific activity of 207 enzymatic units per mg of protein with a yield of 72%. The purification was carried out by sonicating the chloroplastic membranes in the presence of Triton X-114 followed by phase partitioning and anion exchange chromatography. The purified membrane LOX preparation consisted of a single major band with an apparent molecular mass of 97 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results obtained using intact chloroplasts indicate that the enzyme is not localized in the stroma. When the enzyme reacts with linoleic acid, it produces a single peak, which comigrates with standard 9-hydroperoxy-octadecadienoic acid. A physiological role for this chloroplastic LOX is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号