首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An invasive weed can occupy a variety of environments and ecological niches and generally no single control method can be used across all areas the weed is found. Biological control agents integrated with other methods can increase and/or improve site-specific weed control, but such combinatorial approaches have not been widely utilized. The successful leafy spurge (Euphorbia esula L.) control program provides examples for future integrated weed programs that utilize biological control agents with traditional methods. Weed control methods can be used separately, such as when the leafy spurge gall midge (Spurgia esulae Gagné) reduced seed production in wooded areas while herbicides prevented further spread outside the tree line. Traditional methods also can be used directly with biological control agents. Incorporation of Aphthona spp. with herbicides has resulted in more rapid and complete leafy spurge control than either method used alone. Also, the insect population often increased rapidly following herbicide treatment, especially in areas where Aphthona spp. were established for several years but had been ineffective. Incorporation of Aphthona spp. with sheep or goat grazing has resulted in a larger decline in leafy spurge production than insects alone and in weed density than grazing alone. Controlled burns can aid establishment of biological control agents in marginally suitable environments, but timing of the fire must be coordinated to the insect’s life-cycle to ensure survival. Integration of biological control agents with revegetation programs required the agent to be the last method introduced because the cultivation and herbicide treatments necessary to establish desirable grasses and forbs were destructive to the insect. In a practical application, herbicides were combined with Aphthona spp. to help the insect establish and control leafy spurge in the habitat of the western prairie fringed orchid (Platanthera praeclara Sheviak and Bowles), an endangered species. Several experimental designs can be used to evaluate biological control agents with cultural, mechanical, and chemical control methods or with additional biological agents.  相似文献   

2.
In field experiments on a sandy loam at Wellesbourne, England in 1972 and on a silt loam at Agassiz, British Columbia in 1973, combinations of herbicides and insecticides were applied at sowing to determine their effects on weeds and invertebrate populations and on the growth and yield of cauliflowers grown at high density There was good agreement between the results from the two locations. The two combinations of herbicides, 0.6 kg trifluralin/ha incorporated pre-drilling plus 2.2 kg propachlor/ha pre-emergence and 2.2 kg nitrofen/ha plus 2.2 kg propachlor/ha both applied pre-emergence, gave good weed control, their relative effectiveness depending on the species composition of the weed population. The insecticides isophenphos, carbofuran, chlorfenvinphos and fensulfothion were applied as bow-wave treatments. None of them, whether in combination with herbicides or not, adversely affected crop stand or yield. Yield was reduced when either weeds or root-fly maggots (Hylemya brassicae (Bouché)) were not controlled. Only in one experiment was there any evidence of any herbicide-insecticide interactions. Where trifluralin and carbofuran were applied together at Agassiz, the control of both weeds and maggots was less than that with the other combinations. None of the treatments affected the populations of predatory beetles, but the numbers of earthworms were greatly reduced by carbofuran and to a lesser extent by chlorfenvinphos. Except for carbofuran in one experiment, the treatments had no effects on the numbers of aphids, lepidopterous larvae or leaf miners present at harvest.  相似文献   

3.
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard‐wired to behave in a vigorous and ecologically aggressive manner. These ‘microbial weeds’ are able to dominate the communities that develop in fertile but uncolonized – or at least partially vacant – habitats via traits enabling them to out‐grow competitors; robust tolerances to habitat‐relevant stress parameters and highly efficient energy‐generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat‐specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non‐weed species. We propose that the concept of nonweeds represents a ‘dustbin’ group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r‐strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary‐phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open‐habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.  相似文献   

4.
Deployment of genetically modified (GM), herbicide-tolerant corn may alter weed flora abundance and composition and may affect pests and their natural enemies. Among on-plant predators, Orius spp. are the prevalent group in Spain and were selected to study the impact of glyphosate use on predators. We also studied Nabis sp. which is commonly recorded on corn in the study area. For this, a 4-year study was conducted in NE Spain. Three different herbicide regimes were compared: two glyphosate (a broad-spectrum herbicide) treatments per season, no herbicide treatment, and one pre-emergence conventional treatment with selective herbicides against broadleaf and grassy weeds. Density of main arthropod herbivores and the above two predatory groups was recorded on plants. Differences between herbicide regimes were observed in the two functional groups studied, herbivores and heteropteran predators. The comparison of glyphosate-treated and untreated plots showed significant differences for both functional groups, but the differences between glyphosate-treated and conventionally treated plots for the two functional groups were lower. For Orius spp., annual density per plot was significantly correlated with annual density of leafhoppers and to a lesser extent, with aphids. Nabis sp. densities were never different between glyphosate-treated and conventionally treated plots, and Nabis sp. density showed no relation to any of the herbivores tested. We concluded that no significant changes in heteropteran predator densities may be expected from moderate alterations in weeds arising from the deployment of herbicide-tolerant corn varieties and that leafhoppers are probably the herbivore prey that most influences Orius spp. densities in corn in our study area.  相似文献   

5.
The biotechnologial approaches to conferring crop selectivity to herbicides have been demonstrated for a number of compounds such as glyphosate, glufosinate, imidazolinones and cyclohexanediones. Imidazolinone-resistant and cyclohexanedione-resistant maize lines are already in the market. There are several other effective and environmentally benign herbicides such as dicamba, for which engineering crop selectivity is desirable, to broaden the product utility in different crops and provide new solutions for weed control. One of the most effective approaches to conferring dicamba selectivity in crops is to incorporate a gene for its rapid metabolism. It is advantageous to have different dicamba-metabolizing enzymes in order to maximize the chances of at least one functioning optimally in a plant environment. Three different metabolizing enzymes are currently available to engineer crop selectivity. The first one is the folate-dependent O-demethylase from Clostridium thermoaceticum, that converts dicamba to herbicidally inactive 3,6-dichlorosalicylate. The second enzyme is the NADH-dependent, multi-component monooxygenase from Pseudomonas maltophilia DI-6 that also converts dicamba to 3,6-dichlorosalicylate. The third enzyme is from corn endosperm cultures that catalyzes the 5-hydroxylation of dicamba. The merits of these three enzymes are discussed with respect to conferring crop selectivity to dicamba. In addition, a rapid microbial screen was conceived for discovery of new dicamba-degrading bacteria, which resulted in identification of Pseudomonas orvilla. This bacteria degraded dicamba by the same pathway, perhaps using a similar enzyme system as Pseudomonas maltophilia DI-6. However, the microbial screen has the potential to identify novel bacteria that degrade dicamba by a different pathway, providing more options for metabolizing enzymes to confer herbicide selectivity in crops. Received 13 February 1997/ Accepted in revised form 26 June 1997  相似文献   

6.
Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, × Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.  相似文献   

7.
Rice is major crop in India and its cultivation in northwest India started 25 to 30 years ago in assured irrigation areas during the summer rainy season. In this region, rice-wheat rotation became most popular owing to its high yields; however, these crops are highly infested by the weeds, thus farmers use herbicides for their control. Hence, this rotation consumes a maximum quantity of herbicides in this region, which has resulted in several problems (environmental pollution, human health hazards, development of herbicide resistance in weeds). Thus, serious ecological questions about the reliance on herbicides for weed control in this rotation have been raised. One of the alternatives to overcome these problems is with the use of allelopathic strategies, including the use of weed-smothering crops for weed management and for the sustainability of agriculture. The field, pot culture, and laboratory studies have shown that inclusion of weed-smothering crops in rotation considerably reduced the weed population in the current and succeeding crops. Early summer (April-June) fodder crops of sorghum, pearlmillet and maize drastically smothered the weed population and biomass. The residual suppression effect of peralmillet also persisted in the next crop up to 45 days. Thus, it is conceptualized that the inclusion of such summer fodder crops before the rice crop in the rice-wheat rotation may provide satisfactory weed control in the succeeding rice crop and may minimize the use of herbicides. Likewise, the replacement of wheat by winter fodder crops of oat and berseem (Trifolium alexandrinum) may also help in the control of winter weeds. Hence, further studies in this direction may provide satisfactory weed management in rice-wheat rotation and may minimize the use of herbicides and thereby help indeveloping sustainable agricultural practices.  相似文献   

8.
Field and laboratory studies were carried out between 1992 and 1994 to assess the potential for arable weeds to act as reservoirs of beet mosaic potyvirus (BtMV) in fields where sugar beet is cultivated for seed. 933 weed samples were collected and tested by biological methods, while a representative number of weeds were tested by serological methods. The results showed that 97 samples, representing 14 weed species from eight families, were infected with BtMV. The following weeds were found to be naturally infected with BtMV for the first time: Bilderdykia convolvulus, Nonea pulla, Cerastium glomeratum, Galium aparine, Conyza (Erigeron) spp., Fumaria officinalis, Heliotropium europaeum and Rumex spp. The most common weeds found to be infected with BtMV in high percentage were members of the Papaveraceae.  相似文献   

9.
Several isolates of a previously unreported bacterial pathogen were discovered on common cocklebur seedlings in Chicot County, AR and Washington County, MS. Diseased plants in nature exhibited angular-shaped leaf spotting symptoms on leaf margins and central leaf areas. The isolates were cultured from diseased leaf tissue and tentatively identified as Xanthomonas spp., and their virulence on common cocklebur seedlings compared. The most virulent isolate (LVA987) was used in studies to define disease progression on cocklebur seedlings and to carry out a host range evaluation on various weeds and crop plants. High virulence was found on common cocklebur > marestail (Conyza canadensis) > giant ragweed (Ambrosia trifida) ≥ and common ragweed (Ambrosia artemisifolia). These results suggest this pathogen may be useful for the biological control of these important species of weeds. This is also highly relevant since all of these weeds have evolved resistance to one or more synthetic herbicides and are thus becoming more difficult to control with conventional herbicides.  相似文献   

10.
Generalist predators and the prey species Frankliniella occidentalis (Pergande) were periodically sampled from 64 weed species to determine their numerical interrelationships in three ecologically different locations in the eastern Mediterranean region of Turkey in 2002–2003. Adult and nymph stages of seven hemipteran predator species were recorded: Deraeocoris pallens Reuter, Geocoris arenarius (Jakovkev), Nabis punctatus Costa, Orius laevigatus Fieber, Orius majusculus (Reuter), Orius niger (Wolff) and Piocoris erythrocephalus (Peletie and Serville). The most common and abundant predator species was O. niger, which was found on 53 weed species in the winter–spring and summer–fall periods; the highest total numbers of O. niger adults per weed species were 139, 275, 266 and 325 on Urtica urens, Sinapis arvensis, Lamium amplexicaule and Mentha aquatica, respectively. Relatively higher numbers of Orius spp. nymphs were detected on the weed species Echium plantagineum, Cichorium intybus, Heliotropium europeum, Mentha aquatica and Polygonum aviculare. Orius spp. were attracted to flowers in significantly higher numbers than to leaves of the investigated weeds. No significant correlation was found between the numbers of Orius spp. and F. occidentalis on the major weed species, except E. plantagineum. These findings suggest that weeds may provide Orius spp. with resources other than prey, such as nectar and pollen, shelter, and breeding sites. The weed species on which relatively higher numbers of Orius adults and nymphs were found may be considered as candidates for studies aiming to include weeds to enhance integrated pest management of F. occidentalis on crops.  相似文献   

11.
Experiments were done to examine the effects of controlling wild-oats and autumn-germinating broad-leaved weeds in winter wheat, early in winter or late in spring. The herbicides used were barban (winter), chlortoluron or isoproturon (winter), and benzoylprop-ethyl, at the recommended doses and at half doses. Sequential treatments of two herbicides at half doses were also examined. All treatments were given a routine broad-leaved herbicide treatment in spring. Yields of wheat were influenced more by the time of weed removal than by the degree of control achieved. Grain yields at three sites with dense autumn broad-leaved weed populations were greatest following the use of chlortoluron or isoproturon. At three other sites with moderate to dense wild-oat populations (60 to 240 plants/m1), the use of barban at the crop three-leaf stage gave larger yields than benzoylprop-ethyl in late spring at the early stem elongation stage of the crop. Seed formation from surviving A. fatua was similar with both wild-oat herbicides. The treatment which reduced seed production of A. fatua and maintained crop yield most consistently was barban followed by benzoylprop-ethyl, each at half the normal recommended dose.  相似文献   

12.
The effects of four herbicides and hand weeding and no weeding on soybean disease development and seed quality were studied in the field. Chloramben, dinoseb, fluchloralin, and trifluralin were preplant incorporated at recommended rates. In addition, the effect of an in-furrow oat (Avena sativa L.) amendment used as an inoculum carrier was studied in all treatments. Compared with the hand-weeded control, yield, incidence of Septoria leafspot (Septoria glycines), and the recovery of Phomopsis spp. from pod and stem tissues were reduced in the week-infested control and dinosebtreated plots. Recovery of Alternaria spp. was greater from crown tissues of plants grown in chloramben- and fluchloralin-treated plots compared with, either the weed-infested or hand-weeded control. Septoria leafspot ratings and recovery of Phomopsis spp. from various plant tissues were higher in plants from hand-weeded plots compared with weed-infested plots, whereas the opposite was truefor, the recovery of Fusarium spp. Chloramben-treated plots were high-yielding and had the best weed control of all herbicide treatments. Seed quality was not affected by herbicide treatment. Plants from furrows with autoclaved oats had a lower incidence of Septoria glycines, a greater recovery of Fusarium spp. from pod and stem pieces, and produced seed with lower quality than plants from rows with no oat amendment.  相似文献   

13.
The use of genetically modified varieties tolerant to herbicides (HT varieties) and resistant to insects (Bt varieties) in combination with application of a broad-spectrum herbicide such as glyphosate could be an effective option for the simultaneous control of weeds and pests in maize. Nevertheless, the possible impact of these tools on nontarget arthropods still needs to be evaluated. In a field study in central Spain, potential changes in populations of canopy-dwelling arthropods in Bt maize under different weed management options, including glyphosate application, were investigated. Canopy-dwelling arthropods were sampled by visual inspection and yellow sticky traps. The Bt variety had no effect on any group of studied arthropods, except for the expected case of corn borers—the target pests of Bt maize. Regarding the effects of herbicide regimes, the only observed difference was a lower abundance of Cicadellidae and Mymaridae on yellow sticky traps in plots not treated with pre-emergence herbicides. This effect was especially pronounced in a treatment involving two glyphosate applications. The decrease in Cicadellidae and Mymaridae populations was associated with a higher density of weeds in plots, which may have hindered colonization of the crop by leafhoppers. These differences, however, were only significant in the last year of the study. The low likelihood of the use of glyphosate- and herbicide-tolerant varieties for weed control triggering important effects on the nontarget arthropod fauna of the maize canopy is discussed.  相似文献   

14.
Miscanthus, is a promising bioenergy crop, considered superior to other bioenergy crops because of its higher water and nutrient use efficiency, cold tolerance, and higher production of biomass. Broadleaf weeds and grass weeds, cause major problems in the Miscanthus field. A field experiment was conducted in 2018 and 2019, to assess the effects of pre-emergence (alachlor and napropamide) and post-emergence herbicides (nicosulfuron, dicamba, bentazon, and glufosinate ammonium) on broadleaf and grass weeds in M. sinensis and M. sacchariflorus fields. The weed control efficiency and phytotoxicity of pre- and post-emergence herbicides were evaluated at 30 days after treatment (DAT) and compared to those of the control plots. The results showed wide variations in the susceptibility of the weed species to the treated herbicides. Treatment with nicosulfuron 40 g.a.i.ha−1 provided the most effective overall weed control (with 10% visual injury), without affecting the height and biomass of neither Miscanthus species in the field. Post-emergence herbicides such as glufosinate ammonium 400 g.a.i.ha−1 and dicamba 482 g.a.i.ha−1 were effective and inhibited the growth and density of the majority of weeds to a 100%; however, they showed significant phytotoxicity (toxicity scale of 1–10) to both species of Miscanthus. The application of glufosinate ammonium caused severe injuries to the foliar region (90% visual injury) of both Miscanthus sps. Comparatively, M. sinensis showed a slightly higher tolerance to the herbicides nicosulfuron, bentazon and napropamide with 10% visual injury at the recommended dose than M. sacchariflorus. The present study clearly showed that infestation of broadleaf and grass weeds in Miscanthus fields can cause significant damage to the growth and biomass of Miscanthus and applying pre-emergence and post-emergence herbicides effectively controls the high infestation of these weeds.  相似文献   

15.
We speculate that multicopy transposons, carrying both fitness and unfitness genes, can provide new positive and negative selection options to intractable weed problems. Multicopy transposons rapidly disseminate through populations, appearing in approximately 100% of progeny, unlike nuclear transgenes, which appear in a proportion of segregating populations. Different unfitness transgenes and modes of propagation will be appropriate for different cases: (1) outcrossing Amaranthus spp. (that evolved resistances to major herbicides); (2) Lolium spp., important pasture grasses, yet herbicide-resistant weeds in crops; (3) rice (Oryza sativa), often infested with feral weedy rice, which interbreeds with the crop; and (4) self-compatible sorghum (Sorghum bicolor), which readily crosses with conspecific shattercane and with allotetraploid johnsongrass (Sorghum halepense). The speculated outcome of these scenarios is to generate weed populations that contain the unfitness gene and thus are easily controllable. Unfitness genes can be under chemically or environmentally inducible promoters, activated after gene dissemination, or under constitutive promoters where the gene function is utilized only at special times (e.g. sensitivity to an herbicide). The transposons can be vectored to the weeds by introgression from the crop (in rice, sorghum, and Lolium spp.) or from planted engineered weed (Amaranthus spp.) using a gene conferring the degradation of a no longer widely used herbicide, especially in tandem with an herbicide-resistant gene that kills all nonhybrids, facilitating the rapid dissemination of the multicopy transposons in a weedy population.  相似文献   

16.
[目的] 白花鬼针草是一种恶性外来入侵杂草,近年来已侵入农田,对农业生产及生态系统带来严重危害。为筛选防治白花鬼针草的有效除草剂,分析评价了13种常见茎叶处理除草剂对幼苗期和成株期白花鬼针草的防治效果。[方法] 采用整株盆栽法,在白花鬼针草幼苗期(2~3对叶期)和成株期(6~7对叶期)分别进行茎叶喷雾处理,每种除草剂设置3个剂量。[结果] 供试的13种除草剂中,灭生性除草剂草甘膦、草铵膦和敌草快对幼苗期和成株期的白花鬼针草防效达到100%。选择性除草剂中,麦草畏和辛酰溴苯腈对幼苗期和成株期的白花鬼针草均有较好的防效,三氯吡氧乙酸、乙羧氟草醚和氯吡嘧磺隆在高剂量下对幼苗期的白花鬼针草有较好的防除效果,但对成株期的白花鬼针草防效较差,氯氟吡氧乙酸、乳氟禾草灵、灭草松、二氯吡啶酸、乙氧氟草醚对幼苗期和成株期白花鬼针草防效均较差。[结论] 白花鬼针草对多种化学除草剂具有较强的耐药性,生育期对除草剂防除白花鬼针草的效果有较大影响。灭生性除草剂草甘膦、草铵膦、敌草快及选择性除草剂辛酰溴苯腈和麦草畏适用于防除白花鬼针草。  相似文献   

17.
Date palm, Phoenix dactylifera L., is dioecious and can be artificially pollinated by man, and one-third of all the dates of the world are grown in Iraq. In Egypt, there are about 12?million date palm trees grown in 99,867?feddans (fed.?=?4200?m2). Productivity is 1352,954?million?tons with yield 111.7?kg/tree. Plant parasitic nematodes associated with date palm are Criconemoides spp., Helicotylenchus spp., Hemicriconemoides spp., Hemicycliophora spp., Hoplolaimus spp., Meloidogyne incognita, Meloidogyne arenaria, Meloidogyne javanica, Pratylenchus brachyurus, Pratylenchus jordanensis, Pratylenchus coffeae, Pratylenchus neglectus, Pratylenchus thornei, Trichodorus spp., Tylenchorhynchus goffarti, Tylenchorhynchus latus and Xiphinema spp.; Meloidogyne incognita-infected roots of susceptible cultivar favoured giant cell and galls formation. Date palm roots infected with Pratylenchus penetrans showed puncture of epidermal cells and disarrangement of cortical cells with large empty abnormal cavities. As control measures, it is advised to; 1 – plant immune or resistant cultivars against pathogenic nematodes, 2 – use oil cakes or poultry manure as organic amendments and a nematicide, carbofuran.These were tested and found effective in the control of Helicotylenchus multicinctus and P. penetrans, 3 – treat nematode-infested date palm seedlings with hot water at a suitable temperature for a given period before transplanting to open field, 4 – plant nematode -free date palm seedlings, 5 – soil solarisation and tillage before planting, 6 – weed control, 7 – intercrop with nematode-resistant horticultural crops and 8 – induce resistance in susceptible date palm cultivars against root knot nematode.  相似文献   

18.
The discovery of the sulfonamide herbicides, which inhibit the enzyme acetolactate synthase (ALS), has resulted in many investigations to exploit their herbicidal activity. One area which proved particularly productive was the N-aryltriazolo[1,5-c]pyrimidine sulfonamides, providing three commercial herbicides, cloransulam-methyl, diclosulam and florasulam. Additional structure–activity investigations by reversing the sulfonamide linkage resulted in the discovery of triazolopyrimidine sulfonamides with cereal crop selectivity and high levels of grass and broadleaf weed control. Research efforts to exploit these high levels of weed activity ultimately led to the discovery of penoxsulam, a new herbicide developed for grass, sedge and broadleaf weed control in rice. Synthetic efforts and structure–activity relationships leading to the discovery of penoxsulam will be discussed.  相似文献   

19.
Biological control of alligator weed Alternanthera philoxeroides (Mart.) Griseb. has been successful in limiting growth in water in areas with mild or warm winters, but not on land. Until recently, herbicides have had very limited short term and no long term effectiveness. Several herbicides that now provide better control include: glyphosate over water, and metsulfuron and dichlobenil on land and in shallow water. The latter two are limited by lack of selectivity, contamination of water, and cost. Mechanical or manual control has provided local eradication of the weed at a few locations where infestations were small. Alligator weed is still spreading with new outbreaks on New South Wales, Australia (NSW) coastal beach areas and coastal river systems, and on inland waterbodies. Its use as a cultivated vegetable by some ethnic communities has resulted in many new locations in all eastern Australia states: Queensland to Tasmania. It is predicted that it will spread throughout much of coastal and inland southern Australia. The difficulties with management of this weed indicate that every effort should be made to prevent further invasion of wetlands and, in particular, its introduction to Africa, where it is predicted that all wetlands could support destructive levels of alligator weed growth.  相似文献   

20.
Sunflower is the most important oil crop in Hungary, is the base of the production of cooking oil and moreover takes an important part in production of margarine too. Extracted sunflower groats as a secondary product origining from the mentioned procedure can be used in forage successfully. The amount of harvested sunflower reaches the 20-25% of the EU's yield. The sowing area approaches 500 thousand hectares. The essential condition of successful crop production is the perfect weed control. Sowing areas are infected with monocotyledon and dicotyledonous weeds too. Annual dicotyledonous weeds are the most troublesome. The worst species is the Ambrosia artemisiifolia L. Many other weed species as Abutilon theophrasti MEDIC., Datura stramonium L. and Xanthium strumarium L. can cause serious damages. In our model experiments we examined the herbicide sensibility of two commercial sunflower cultivars as "Iregi szürke csikos", "Marica II" and a sulfonylurea-urea tolerant new hybrid "PR63E82". The experiment was set up under greenhouse conditions with the use of four important weed and different post-emergent herbicide as Modown 4F (bifenox), Pledge 50 WP (flumioxazin) and Granstar 75 DF (tribenuron-methyl). We applied normal and double doses too. Sunflower was cultivated to 4-6 leaf stage. Post-emergent herbicides were sprayed out when weeds were in 2, 2-4 and 4-6 leaf stage. Weed killer and phytotoxic effects of post-emergent herbicides were examined. We declared that development of weeds had significally effect on the effectiveness of different herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号