首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The structure of a simple chordotonal organ, the presumed homologue of the noctuoid moth tympanal organ, is described in the atympanate moth, Actias luna. The organ consists of a proximal scolopidial region and a distal strand, which attaches peripherally to the membranous cuticle ventral to the hindwing alula. The strand is composed of elongate, microtubule-rich cells encased in an extracellular connective tissue sheath. The scolopidial region houses three mononematic, monodynal scolopidia, each comprised of a sensory cell, scolopale cell, and attachment cell. The dendritic apex is octagonally shaped in transverse section, its inner membrane lined by a laminated structure reminiscent of the noctuoid tympanal organ collar. A 9+0-type cilium emerges from the dendritic apex, passes through both the scolopale lumen and cap, and terminates in an extracellular space distal to the latter. Proximal extensions of the attachment cell and distal prolongations of the scolopale cell surrounding the cap are joined by an elaborate desmosome, with which is associated an extensive electron-dense fibrillar plaque. Within the scolopale cell, this plaque constitutes the scolopale rod material. The data are discussed in terms of both the organ's potential function, and its significance as the evolutionary proto-type of the noctuoid moth ear.  相似文献   

2.
A multiterminal neurone, recently identified at the wing-hinge of the atympanate moth Manduca sexta, is shown to respond as a proprioceptor monitoring elevatory movements of the hind wing. Extracellular recordings from the individual receptor axon confirm this cell to be the source of the spontaneous and regular discharge observed in previous recordings of peripheral nerve 3N1b1. When the wing is raised, this tonic discharge rate increases proportionally with the angle of elevation. When the wing is displaced sinusoidally at a low frequency, the receptor discharge is modulated throughout the wing beat, increasing steadily to a maximum at the top of the upstroke, then slowly decreasing to a minimum at the bottom of the downstroke. At higher wing-beat frequencies, a phasic burst of activity occurs near the top of the upstroke, followed by a silent period during the down-stroke. Video-microscopic observations of the wing-hinge during active, stationary flight suggest that the receptor is stimulated by the stretching of its peripheral attachment, the subalar membrane. Stretch receptor sensitivity to wing movement is demonstrated in representatives of 4 lepidopteran families, suggesting that the proprioceptive response is widespread among the Lepidoptera. The functional role of the wing-hinge receptor, and its proposed homologous relationship to both the B cell of the noctuoid moth ear, and the locust wing-hinge stretch receptor are discussed.Abbreviations CO chordotonal organ - EGAA Enhanced Graphics Acquisition and Analysis System - HP hair plate - 3N1b1 tympanal nerve - SR stretch receptor  相似文献   

3.
I. Hasenfuss 《Zoomorphology》1997,117(3):155-164
 The patterns of scolopal organs and their innervation were studied by the methylene blue method in larvae, pupae and adults of an Yponomeuta species (Yponomeutidae) and of tympanate adult representatives of the Noctuoidea, Geometridae, Drepanidae and Pyraloidea. The studies were focused mainly on the mesothorax, the metathorax and some anterior abdominal segments. In the abdominal tympanal organs of Geometridae, Drepanidae and Pyraloidea, the auditory scolopidia are homologous with the lateral scolopal organs of the first abdominal segment; however, the hearing organs as such evolved independently in the three taxa. The studies confirm that the tympanal organ in the Noctuoidea is derived from the caudal dorsolateral region of the metathorax including its dorsal scolopal organ and the B-cell. The adult scolopal organs are present already in the larvae and are maintained nearly unchanged during metamorphosis to the adult. Only in the Noctuoidea are the three sensory cells of the larval scolopal organs, which become part of the tympanal organs, reduced to one (in Notodontidae) or two (in other Noctuoidea) during metamorphosis. A hypothetical scenario of the evolution of the tympanal organs is outlined. Accepted: 12 March 1997  相似文献   

4.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears. The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

5.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears.The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

6.
The adult gypsy moth, Lymantria dispar (Lymantriidae: Noctuoidea) has a pair of metathoracic tympanic ears that each contain a two-celled auditory chordotonal organ (CO). The earless forest tent caterpillar moth, Malacosoma disstria (Lasiocampidae: Bombycoidea), has a homologous pair of three-celled, nonauditory hindwing COs in their place. The purpose of our study was to determine whether the adult CO in both species arises from a preexisting larval organ or if it develops as a novel structure during metamorphosis. We describe the larval metathoracic nervous system of L. dispar and M. distria, and identify a three-celled chordotonal organ in the anatomically homologous site as the adult CO. If the larval CO is severed from the homologue of the adult auditory nerve (IIIN1b1) in L. dispar prior to metamorphosis, the adult develops an ear lacking an auditory organ. Axonal backfills of the larval IIIN1b1 nerve in both species reveal three chordotonal sensory neurons and one nonchordotonal multipolar cell. The axons of these cells project into tracts of the central nervous system putatively homologous with those of the auditory pathways in adult L. dispar. Following metamorphosis, M. disstria moths retain all four cells (three CO and one multipolar) while L. dispar adults possess two cells that service the auditory CO and one nonauditory, multipolar cell. We conclude that the larval IIIN1b1 CO is the precursor of both the auditory organ in L. dispar and the putative proprioceptor CO in M. disstria and represents the premetamorphic condition of these insects. The implications of our results in understanding the evolution of the ear in the Lepidoptera and insects in general are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
8.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   

9.
Two different types of ears characterize the order of Orthopteran insects. The auditory organs of grasshoppers and locusts (Caelifera) are located in the first abdominal segment, those of bushcrickets and crickets (Ensifera) are found in the tibiae of the prothoracic legs. Using neuron-specific antibody labelling, we describe the ontogenetic origin of these two types of auditory organs, use comparative developmental studies to identify their segmental homologs, and on the basis of homology postulate their evolutionary origin. In grasshoppers the auditory receptors develop by epithelial invagination of the body wall ectoderm in the first abdominal segment. Subsequently, at least a part of the receptor cells undergo active migration and project their out-growing axons onto the next anterior intersegmental nerve. During this time the receptor cells and their axons express the cell-cell adhesion molecule, Fasciclin I. Similar cellular and molecular differentiation processes in neighboring segments give rise to serially homologous sensory organs, the pleural chordotonal organs in the pregenital abdominal segments, and the wing-hinge chordotonal organs in the thoracic segments. In more primitive earless grasshoppers pleural chordotonal organs are found in place of auditory organs in the first abdominal segment. In bushcrickets the auditory receptors develop in association with the prothoracic subgenual organ from a common developmental precursor. The auditory receptor neurons in these insects are homologous to identified mechanoreceptors in the meso- and metathoracic legs. The established intra- and interspecies homologies provide insight into the evolution of the auditory organs of Orthopterans.  相似文献   

10.
The dipteran parasitoids Therobia leonidei and Homotrixa alleni (Tachinidae) use acoustic cues to locate their calling tettigoniid (Ensifera, Orthoptera) hosts. The sexually dimorphic tympanal organs of both fly species are located at the prosternum. For comparison a homologous chordotonal organ in the non-hearing fly Phormia regina, Meigen (Phoridae) is also described. The scolopidial sense organs of the ears have approximately 180 sensory cells in Th. leonidei and 250 cells in H. alleni. Interspecific analysis indicates that the cell number and arrangement might be genus specific in Tachinidae. The mononematic scolopidia, each with one sensory cell, are of different sizes and insert at the tympanal membrane. Large scolopidial units (diameter of sensory cells up to 50 μm) extend longitudinally from the centre of the sensory organ towards the ligament, whereas small units (sensory cell diameter up to 10 μm) are arranged sequentially within the sensory organ. This arrangement is discussed to be a possible basis for frequency discrimination. The ultrastructure of the scolopidia is similar in the hearing and non-hearing flies. In both groups, the majority of scolopales has a diameter from 2 to 2.9 μm, although hearing species have additionally wider scolopales. The homologous chordotonal organ of Ph. regina consists of approximately 55 sensory cells of uniform direction. The data are discussed in comparison to the ears of other Diptera.  相似文献   

11.
This study identifies the cuticular metathoracic structures in earless cockroaches that are the homologs to the peripheral auditory components in their sister taxon, praying mantids, and defines the nature of the cuticular transition from earless to eared in the Dictyoptera. The single, midline ear of mantids comprises an auditory chamber with complex walls that contain the tympana and chordotonal transduction elements. The corresponding area in cockroaches, between the furcasternum and coxae, has many socketed hairs arranged in discrete fields and the Nerve 7 chordotonal organ, the homolog of the mantis tympanal organ. The Nerve 7 chordotonal organ attaches at the apex of the lateral ventropleurite (LVp), which has the same shape and general structure as an auditory chamber wall. High-speed video shows that when the coxa moves toward the midline, the LVp rotates medially to stimulate socketed hairs, and also moves like a triangular hinge giving the chordotonal organ maximal in-out stimulation. Formation of the mantis auditory chamber from the LVp and adjacent structures would involve only enlargement, a shift toward the midline, and a mild rotation. Almost all proprioceptive function would be lost, which may constitute the major cost of building and maintaining the mantis ear. Isolation from leg movement dictates the position of the mantis ear in the midline and the rigid frame, formed by the cuticular knobs, which protects the chordotonal organs.  相似文献   

12.
Small swellings near the base of the radial vein in each fore wing of the green lacewing, Chrysopa carnea, resemble typical insect tympanal organs, but some important differences are apparent. The swellings are bounded dorsally and laterally by thick cuticle and ventrally by thin, membranous cuticle. The ventral membrane is formed by a single, thin sheet of exocuticle with flattened hypodermis internally, but lacks the tracheal component that forms part of the tympanum in the typical insect tympanal organ. The portion of the membrane beneath each swelling is rippled while proximally it is smooth. In contrast to typical insect tympanal organs, the swellings in C. carnea are largely fluid-filled since an unexpanded trachea runs through each organ. A distal and a proximal chordotonal organ composed of typical chordotonal sensory units are associated with each swelling. The distal organ contains from five to seven units while the proximal organ is composed of from 18 to 20 units. Each sensory unit is composed of three readily identifiable cells. Distally, an attachment cell unites with the membrane and is contiguous with the scolopale cell, which surrounds the dendrite of the bipolar neuron. On the basis of the morphological evidence, one would not expect these swellings to function as sound receptors. However, the results of physiological and behavioral experiments, presented elsewhere, show that these organs are receptors for ultrasound.  相似文献   

13.
The anatomy and the physiology of the prosternal chordotonal organ (pCO) within the prothorax of Sarcophaga bullata is analysed. Neuroanatomical studies illustrate that the approximately 35 sensory axons terminate within the median ventral association centre of the different neuromeres of the thoracico-abdominal ganglion. At the single-cell level two classes of receptor cells can be discriminated physiologically and morphologically: receptor cells with dorso-lateral branches in the mesothoracic neuromere are insensitive to frequencies below approximately 1 kHz. Receptor cells without such branches respond most sensitive at lower frequencies. Absolute thresholds vary between 0.2 and 8m/s(2) for different frequencies. The sensory information is transmitted to the brain via ascending interneurons. Functional analyses reveal a mechanical transmission of forced head rotations and of foreleg vibrations to the attachment site of the pCO. In summed action potential recordings a physiological correlate was found to stimuli with parameters of leg vibrations, rather than to those of head rotation. The data represent a first physiological study of a putative predecessor organ of an insect ear.  相似文献   

14.
Summary In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.Abbreviations aRT anterior part of the ring tract - cf characteristic frequency - MVT median ventral tract - SEG suboesophageal ganglion - SMC supramedian commissure - VMT ventral median tract - VIT ventral intermediate tract Supported by the Deutsche Forschungsgemeinschaft; part of program A7 in Sonderforschungsbereich 305 (Ecophysiology)  相似文献   

15.
We investigated the synaptic inputs from the serially homologous pleural, tympanal and wing-hinge chordotonal organs onto a set of identified homologous interneurons (714, 539, 529) in the ventral nerve cord of the grasshopper Schistocerca gregaria. Cobalt backfills show that afferents from all chordotonal organs project into stereotypic tracts in the central nervous system in which intracellular staining reveals the interneurons to have dendritic arborizations. Neuron 714 was found to receive excitatory bilateral synaptic input from all the serial chordotonal organs tested, from the second thoracic segment down to the seventh abdominal segment. Neuron 531, by contrast, only receives input from the chordotonal afferents on the first abdominal segment; those on the axon side are excitatory, while those on the soma side are inhibitory. The pattern of chordotonal input onto neuron 529 is similar to that seen for neuron 714, with the exception that neuron 529 receives no input from the forewing chordotonal organs. The pattern of afferent connectivities onto neurons 714, 531 and 529 differs with respect to those afferents which synapse directly or indirectly with the respective neuron. The synaptic inputs demonstrate a segmental specialization in the chordotonal system and thereby offer an insight into information processing in a modular sensory system.  相似文献   

16.
Summary The metathoracic femoral chordotonal organ of the locust (Locusta migratoria) is an internal proprioceptor composed of mechanosensory neurones which respond to tibial position, velocity, or acceleration, or to combinations of these parameters. Discriminant function analyses confirmed the visual observation that neurones with different responses to tibial movements had different central branching patterns. Some aspects of the projections were consistent for all neurones (e.g., the path taken by the main neurite through the metathoracic ganglion), whereas other regions of branches were consistently reduced or missing in some response classes. Some position-and-acceleration receptors had no main branches off the main neurite, and must therefore make relatively restricted contact with motor neurones and interneurones. Phasic or tonic neurones which responded in ranges of tibial extension had branches which projected further medial in Dorsal Commissures III and IV than similar neurones which responded in ranges of tibial flexion. I compare my results to previous studies of mapping in the insect CNS.Abbreviations (ms) (mt)FCO (mesothoracic) (metathoracic) femoral chordotonal organ - ANOVA Analysis of Variance  相似文献   

17.
Summary The anatomy of the complex tibial organs in the pro-, meso- and metathoracic legs of adults and larvae of the bushcricketEphippiger ephippiger is described comparatively. The subgenual organ and the intermediate organ are differentiated in the same way in legs I, II and III; the anatomy of the crista acustica and the tracheal morphology are significantly different. The final number of scolopidia in the tibial organ of each leg is present at the time of hatching. In the subgenual organ, the number of scolopidia is the same in all legs; in the intermediate organ, and especially in the crista acustica, the number of scolopidia decreases from leg I to legs II and III. In the first larval instar, the morphology of the tibia, the course of the trachea and the anatomy of accessory structures are developed in the same way in each leg. The specific differentiations forming the auditory receptor organ in leg I, such as the acoustic trachea, the tympana and tympanal cavities, develop step by step in subsequent instars. The auditory threshold recorded from the tympanal nerve in the prothoracic leg of adults is remarkably lower than in the meso- and metathoracic legs. Morphometrical analyses of structures that are suggested to play a role in stimulus transduction on scolopidia of the crista acustica reveal significant differences in the three legs.  相似文献   

18.
Summary Genetically marked thoracic imaginal disks ofDrosophila melanogaster were partially dissociated and reaggregated. After metamorphosis, combinations of dorsal proand mesothoracic disks gave rise to mosaics, whereas no such mosaics were formed in combinations of dorsal meso- and metathoracic disks. Adventitious bristles are formed by the metathoracic disk, but these were never integrated in a common pattern with mesothoracic bristles.  相似文献   

19.
The femoral chordotonal organ in orthopterans signals proprioceptive sensory information concerning the femur-tibia joint to the central nervous system. In the stick insect, 80 out of 500 afferents sense tibial position, velocity, or acceleration. It has been assumed that the other sensory cells in the chordotonal organ would serve as vibration detectors. Extracellular recordings from the femoral chordotonal organ nerve in fact revealed a sensitivity of the sense organ for vibrations with frequencies ranging from 10 Hz to 4 kHz, with a maximum sensitivity between 200 and 800 Hz. Single vibration-sensitive afferents responded to the same range of frequencies. Their spike activity depended on acceleration amplitude and displacement amplitude of the vibration stimulus. Additionally, 80% of the vibration-sensitive afferents received indirect presynaptic inputs from themselves or from other afferents of the femoral chordotonal organ, the amplitude of which depended on stimulus frequency and displacement amplitude. They were associated with a decrease of input resistance in the afferent terminal. From the present investigation we conclude that the femoral chordotonal organ of the stick insect is a bifunctional sensory organ that, on the one hand, measures position and movement of the tibia and, on the other hand, detects vibration of the tibia. Accepted: 6 November 1998  相似文献   

20.
The central branchings of the sensory neurons in the noctuid moth ear have been investigated by introducing cobalt chloride through the cut ends of their axons. Three sensory axons stained, corresponding to the two auditory neurons (A cells) and the B neuron. The three axons were identified using physiological criteria. All three cells share the same basic morphology. Their axons divide into anterior and posterior branches, which contain numerous side branches. Their profiles lie ipsilateral, but A1 gives off some fine side branches that cross the midline. The profiles of A1 and B extend throughout all three thoracic ganglia, occupying a ventral, medial position. The branchings of A2 remain within the meso- and metathoracic ganglia occupying a more dorsal and lateral position. We compare our results with those of an earlier anatomical study, and discuss them in relation to described interneurones and to behaviour  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号