共查询到20条相似文献,搜索用时 10 毫秒
1.
N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. 相似文献
2.
Histone deacetylases (HDACs) are important epigenetic factors regulating a variety of vital cellular functions such as cell cycle progression, differentiation, cell migration, and apoptosis. Consequently, HDACs have emerged as promising targets for cancer therapy. The drugability of HDACs has been shown by the discovery of several structural classes of inhibitors (HDACis), particularly by the recent approval of two HDACis, vorinostat (ZOLINZA) and romidepsin (Istodax), for the treatment of cutaneous T-cell lymphoma by the US Food and Drug Administration. The outstanding potential of HDACis, with a defined isoform selectivity profile as drugs against a plurality of diseases, vindicates increased effort in developing high-throughput capable assays for screening campaigns. In this study, a dual-competition assay exploiting changes in fluorescence anisotropy and lifetime was used to screen the LOPAC (Sigma-Aldrich, St Louis, MO) library against the bacterial histone deacetylase homologue HDAH from Bordetella, which shares 35% identity with the second deacetylase domain of HDAC6. The binding assay proved to be highly suitable for high-throughput screening campaigns. Several LOPAC compounds have been identified to inhibit HDAH in the lower micromolar range. Most interestingly, some of the hit compounds turned out to be weak but selective inhibitors of human class IIa and IIb HDACs. 相似文献
3.
Feng Y Shen X Chen K Jiang H Liu D 《Bioscience, biotechnology, and biochemistry》2008,72(7):1936-1939
We developed a new assay of Bcl-xL inhibitors based on fluorescence resonance energy transfer that occurs between an AEDANS-labeled Bak-BH3 peptide and three tryptophans in the BH1 and BH2 domains of Bcl-xL. The method can tolerate up to 5% DMSO, and it was validated with several Bcl-xL inhibitors. It can be adapted to screen for compounds targeting other Bcl-2 family proteins. 相似文献
4.
We describe an assay scheme for glucose based on fluorescence resonance energy transfer (FRET) between concanavalin A (con A), labeled with the near-infrared fluorescent protein allophycocyanin (APC) as donor, and dextran labeled with malachite green (MG) as acceptor. Glucose competitively displaces dextran-MG and leads to reduction in FRET, assessed by time-domain fluorescence lifetime measurements using time-correlated single-photon counting. The assay is operative in the glucose concentration range 2.5-30 mM, and therefore suitable for use in monitoring diabetes control. Albumin and serum inhibit FRET but the interference can be prevented by removal of high molecular weight substances by membrane filters. APC shows promise for incorporation in an implanted glucose sensor which can be interrogated from outside the body. 相似文献
5.
Joyce Kwan Alden Ling Eva Papp David Shaw J. Michael Bradshaw 《Analytical biochemistry》2009,395(2):256-262
Novel biochemical strategies are needed to identify the next generation of protein kinase inhibitors. One promising new assay format is a competition binding approach that employs time-resolved fluorescence resonance energy transfer (TR–FRET). In this assay, a FRET donor is bound to the kinase via a purification tag, whereas a FRET acceptor is bound via a tracer-labeled inhibitor. Displacement of the tracer by an unlabeled inhibitor eliminates FRET between the fluorophores and provides a readout on binding. Although promising, this technique has so far been limited in applicability in part by a lack of signal strength is some cases and also by an inability to predict whether a particular tagging strategy will show robust FRET. In this work, we sought to better understand the factors that give rise to a strong FRET signal in this assay. We determined the magnitude of FRET for several tyrosine kinases using different purification tags (biotin, glutathione S-transferase [GST], and His) placed at either the N terminus or C terminus of the kinase. It was observed that coupling the FRET acceptor to the kinase C terminus using a biotin/streptavidin interaction resulted in the greatest increase in FRET. Specifically, for multiple kinases, the signal/background ratio was at least 3-fold better using C-terminal biotinylation compared with tagging at the N terminus using a His/anti-His antibody or GST/anti-GST antibody interaction. In one case, the FRET signal using C-terminal biotin tagging was more than 150-fold over background. This strong FRET signal facilitated development of improved inhibitor binding assays that required only tens of picomolar enzyme or tracer-labeled inhibitor. Together, these results indicate that C-terminal biotinylation is a promising tagging strategy for developing an optimal FRET-based competition binding assay for tyrosine kinases. 相似文献
6.
The serine/threonine kinase polo-like kinase 1 (Plk1) is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its substrates and its intracellular anchoring sites via its polo-box domain (PBD), which is unique to the family of polo-like kinases. Therefore, inhibition of the Plk1 PBD has been suggested as an approach to the inhibition of Plk1 that circumvents specificity problems associated with the inhibition of the conserved adenosine triphosphate (ATP) binding pocket. Here we report on the development of a high-throughput assay based on fluorescence polarization that allows the discovery of small-molecule inhibitors of the Plk1 PBD. The assay is based on binding of the Plk1 PBD to a phosphothreonine-containing peptide comprising its optimal binding motif with a Kd of 26 ± 2 nM. It is stable with regard to dimethyl sulfoxide (DMSO) and time, and it has a Z′ value of 0.73 ± 0.06 in a 384-well format. 相似文献
7.
Pritz S Meder G Doering K Drueckes P Woelcke J Mayr LM Hassiepen U 《Journal of biomolecular screening》2011,16(1):65-72
We present a novel homogeneous in vitro assay format and apply it to the quantitative determination of the enzymatic activity of a tyrosine kinase. The assay employs a short peptidic substrate containing a single tyrosine and a single probe attached via a cysteine side chain. The structural flexibility of the peptide allows for the dynamic quenching of the probe by the nonphosphorylated tyrosine side chain. The probe responds with changes in its fluorescence lifetime depending on the phosphorylation state of the tyrosine. We use this effect to directly follow the enzymatic phosphorylation of the substrate, without having to resort to additional assay components such as an antibody against the phosphotyrosine. As an example for the application of this assay principle, we present results from the development of an assay for Abelson kinase (c-Abl) used for compound profiling. Adjustments in the peptide sequence would make this assay format suitable to a wide variety of other tyrosine kinases. 相似文献
8.
Chopra P Nanda K Chatterjee M Bajpai M Dastidar SG Ray A 《Analytical biochemistry》2008,380(1):143-145
During the past few years, high-throughput screening (HTS) has provided a useful resource to researchers involved in the development of kinase inhibitors as a novel therapeutic modality. However, with all the choices among kinase assays, there is not yet a one-size-fits-all assay. Therefore, selection of a specific kinase assay is a daunting task. HTS assays should be homogeneous, cost effective, use nonradioactive reagents, generic and not time consuming. Here, we report an improved method of assaying protein kinase activity using a zinc cocktail in a fluorescence polarization-(FP) based format. Assay conditions were standardized manually and validated in a HTS format using a liquid handler. We validated this assay for both serine/threonine and tyrosine (receptor/nonreceptor) kinases. The results obtained in the HTS assay system were comparable to the commercially available fluorescence-based assay. We suggest that the reported assay is a cost-effective alternative to the IMAP-based generic kinase assay. 相似文献
9.
A batch assay using Calcofluor fluorescence to characterize cell wall regeneration in plant protoplasts 总被引:1,自引:0,他引:1
M G Meadows 《Analytical biochemistry》1984,141(1):38-42
A batch assay to study and measure the regeneration of cell walls during the early days of culture of primary protoplasts is presented. The assay involves the measurement of Calcofluor White fluorescence on a scanning fluorometer when the Calcofluor is adsorbed to the cellulosic component of the newly synthesized cell walls. The Calcofluor fluorescence, when standardized with microcrystalline cellulose, provided a measure of cell wall cellulose. The assay was used to study cell wall regeneration in Hyoscyamus muticus L. protoplasts during 8 days of culture. 相似文献
10.
A 6-acryloyl-2-dimethylaminonapthalene (acrylodan)-labeled 25-amino acid peptide (acrylodan-CKK-KKRFSFKKSFKLSGFSFKKNKK-COO-), containing the protein kinase C (PKC) phosphorylation sites of brain myristoylated alanine-rich kinase C substrate protein, undergoes a 20% fluorescence decrease when it is phosphorylated by phospholipid/calcium-dependent protein kinase (PKC). This fluorescence decrease is dependent on the presence of PKC, calcium (half-maximal stimulation at pCa = 6.2), phosphatidylserine, diacylglycerol, or phorbol-12-myristate-13-acetate (half-maximal stimulation at 2 nM) and ATP, and correlates well (r = 0.997) with [32P]phosphate incorporation into the peptide. This fluorescence assay allows detection of 0.02 nM PKC, while similar concentrations of cyclic AMP-dependent or type II calmodulin-dependent protein kinases produced no change in peptide fluorescence. The method can be used to assay purified PKC as well as activity in crude brain homogenates. Incubation of PKC with staurosporine inhibits the fluorescence decrease with an IC50 of 2 nM. Thus the fluorescence decrease that occurs in the acrylodan-peptide provides a continuous fluorescence assay for PKC activity. 相似文献
11.
Dams G Van Acker K Gustin E Vereycken I Bunkens L Holemans P Smeulders L Clayton R Ohagen A Hertogs K 《Journal of biomolecular screening》2007,12(6):865-874
Fusion of host cell and human immunodeficiency virus type 1 (HIV-1) membranes is mediated by the 2 "heptad-repeat" regions of the viral gp41 protein. The collapse of the C-terminal heptad-repeat regions into the hydrophobic grooves of a coiled-coil formed by the corresponding homotrimeric N-terminal heptad-repeat regions generates a stable 6-helix bundle. This brings viral and cell membranes together for membrane fusion, facilitating viral entry. The authors developed an assay based on soluble peptides derived from the gp41 N-terminal heptad-repeat region (IQN36) as well as from the C-terminal region (C34). Both peptides were labeled with fluorophores, IQN36 with allophycocyanin (APC) and C34 with the lanthanide europium (Eu3+). Formation of the 6-helix bundle brings both fluorophores in close proximity needed for F?rster resonance energy transfer (FRET). Compounds that interfere with binding of C34-Eu with IQN36-APC suppress the FRET signal. The assay was validated with various peptides and small molecules, and quenching issues were addressed. Evaluation of a diversified compound collection in a high-throughput screening campaign enabled identification of small molecules with different chemical scaffolds that inhibit this crucial intermediate in the HIV-1 entry process. This study's observations substantiate the expediency of time-resolved FRET-based assays to identify small-molecule inhibitors of protein-protein interactions. 相似文献
12.
Howes R Barril X Dymock BW Grant K Northfield CJ Robertson AG Surgenor A Wayne J Wright L James K Matthews T Cheung KM McDonald E Workman P Drysdale MJ 《Analytical biochemistry》2006,350(2):202-213
Hsp90 encodes a ubiquitous molecular chaperone protein conserved among species which acts on multiple substrates, many of which are important cell-signaling proteins. Inhibition of Hsp90 function has been promoted as a mechanism to degrade client proteins involved in tumorigenesis and disease progression. Several assays to monitor inhibition of Hsp90 function currently exist but are limited in their use for a drug discovery campaign. Using data from the crystal structure of an initial hit compound, we have developed a fluorescence polarization assay to monitor binding of compounds to the ATP-binding site of Hsp90. This assay is very robust (Z' > 0.9) and can detect affinity of compounds with IC50s to 40 nM. We have used this assay in conjunction with cocrystal structures of small molecules to drive a structure-based design program aimed at the discovery and optimization of a novel class of potent Hsp90 inhibitors. 相似文献
13.
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone required for the stability and function of a number of client proteins, many of which are involved in cancer development. The natural products geldanamycin (GM) and radicicol (RD) are known inhibitors of Hsp90, and their derivatives are being developed for the treatment of various cancers. To identify novel Hsp90 inhibitors, a highly robust time-resolved fluorescence resonance energy transfer (TR-FRET)-based HTS assay that measures the binding of biotinylated geldanamycin (biotin-GM) to the His-tagged human Hsp90 N-terminal ATP-binding domain (Hsp90N) was developed. This assay was optimized in 1536-well plates and was used as the primary assay to screen 10(6) compounds. Identified "hits" were then confirmed in a scintillation proximity assay (SPA) and a DEAE membrane-based assay for [(3)H]AAG binding to Hsp90. In addition, a surface plasmon resonance (SPR) assay that measures the direct interaction of Hsp90 with its inhibitors was developed and used to further characterize the identified inhibitors. Several potent and reversible inhibitors of human Hsp90 with K(d) values measured in the high nanomolar range were identified. 相似文献
14.
Glaser BT Malerich JP Duellman SJ Fong J Hutson C Fine RM Keblansky B Tang MJ Madrid PB 《Journal of biomolecular screening》2011,16(2):230-238
DNA gyrase, a type II topoisomerase that introduces negative supercoils into DNA, is a validated antibacterial drug target. The holoenzyme is composed of 2 subunits, gyrase A (GyrA) and gyrase B (GyrB), which form a functional A(2)B(2) heterotetramer required for bacterial viability. A novel fluorescence polarization (FP) assay has been developed and optimized to detect inhibitors that bind to the adenosine triphosphate (ATP) binding domain of GyrB. Guided by the crystal structure of the natural product novobiocin bound to GyrB, a novel novobiocin-Texas Red probe (Novo-TRX) was designed and synthesized for use in a high-throughput FP assay. The binding kinetics of the interaction of Novo-TRX with GyrB from Francisella tularensis has been characterized, as well as the effect of common buffer additives on the interaction. The assay was developed into a 21-μL, 384-well assay format and has been validated for use in high-throughput screening against a collection of Food and Drug Administration-approved compounds. The assay performed with an average Z' factor of 0.80 and was able to identify GyrB inhibitors from a screening library. 相似文献
15.
Thomas A. Bunch Victoria C. Lepak Kellan M. Bortz Brett A. Colson 《The Journal of general physiology》2021,153(3)
Binding properties of actin-binding proteins are typically evaluated by cosedimentation assays. However, this method is time-consuming, involves multiple steps, and has a limited throughput. These shortcomings preclude its use in screening for drugs that modulate actin-binding proteins relevant to human disease. To develop a simple, quantitative, and scalable F-actin–binding assay, we attached fluorescent probes to actin''s Cys-374 and assessed changes in fluorescence lifetime upon binding to the N-terminal region (domains C0–C2) of human cardiac myosin-binding protein C (cMyBP-C). The lifetime of all five probes tested decreased upon incubation with cMyBP-C C0–C2, as measured by time-resolved fluorescence (TR-F), with IAEDANS being the most sensitive probe that yielded the smallest errors. The TR-F assay was compared with cosedimentation to evaluate in vitro changes in binding to actin and actin–tropomyosin arising from cMyBP-C mutations associated with hypertrophic cardiomyopathy (HCM) and tropomyosin binding. Lifetime changes of labeled actin with added C0–C2 were consistent with cosedimentation results. The HCM mutation L352P was confirmed to enhance actin binding, whereas PKA phosphorylation reduced binding. The HCM mutation R282W, predicted to disrupt a PKA recognition sequence, led to deficits in C0–C2 phosphorylation and altered binding. Lastly, C0–C2 binding was found to be enhanced by tropomyosin and binding capacity to be altered by mutations in a tropomyosin-binding region. These findings suggest that the TR-F assay is suitable for rapidly and accurately determining quantitative binding and for screening physiological conditions and compounds that affect cMyBP-C binding to F-actin for therapeutic discovery. 相似文献
16.
Nosjean O Souchaud S Deniau C Geneste O Cauquil N Boutin JA 《Journal of biomolecular screening》2006,11(8):949-958
Fluorescence polarization is a screening technology that is radioactivity free, homogeneous, and ratiometric. The signal measured with this technology is a weighted value of free and bound ligand. As a consequence, saturation curves are accessible only after calculation of the corresponding concentrations of free and bound ligand. To make this technology more accessible to assay development, the authors propose a simple mathematical model that predicts fluorescence polarization values from ligand and receptor total concentrations, depending on the corresponding dissociation constant. This model was validated using data of Bodipy-NDP-alphaMSH binding to MC(5), obtained after either ligand saturation of a receptor preparation or, conversely, receptor saturation of a ligand solution. These experimental data were also used to calculate the actual concentration of free and bound ligand and receptor and to obtain pharmacological constants by Scatchard analysis. A general method is proposed, which facilitates the design of fluorescence polarization binding assays by relying on the representation of theoretical polarization values. This approach is illustrated by the application to 2 systems of very different affinities. 相似文献
17.
We recently reported that ectopic expression of ceramide kinase (CerK) in various cell lines increases their sensitivity to cell death induced by the exogenous addition of short-chain (e.g., C2) ceramides (Cer). Here we show that this higher sensitivity results from CerK catalytic activity and production of C2-ceramide 1-phosphate (C2-C1P). If CerK activity is inhibited by the potent inhibitor NVP-231, C2-C1P is not produced and viability returns to control levels. The EC50 of NVP-231 in this assay is in the low nanomolar range, consistent with the IC50 determined in activity assays in vitro using purified CerK. NVP-995, a structurally related but inactive compound, does not protect against C2-Cer-induced cell death. This assay is robust and easy to implement and scale up, thereby providing a valuable secondary screen assay for CerK inhibitors. 相似文献
18.
Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P. 相似文献
19.
Ardeshirpour Y Chernomordik V Zielinski R Capala J Griffiths G Vasalatiy O Smirnov AV Knutson JR Lyakhov I Achilefu S Gandjbakhche A Hassan M 《PloS one》2012,7(2):e31881
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy. 相似文献
20.
Christoph Reisinger Friso van Assema Martin Schürmann Zahid Hussain Peter Remler Helmut Schwab 《Journal of Molecular Catalysis .B, Enzymatic》2006,39(1-4):149-155
Direct visualization of the activity of enzymes expressed by bacterial colonies attached to a solid support, often referred to as “filter assay”, is a powerful strategy for the identification of new or improved biocatalysts. In this work we demonstrate the usefulness of NAD+/NADH coupled enzymatic reactions as visualization tool in such experimental setups. Dehydrogenases, capable of oxidizing or reducing the reaction product released from the bacterial colony were supplemented to the screening solution, together with the screening substrate and a sufficient amount of NAD+ or NADH, respectively. We also examined the screening of directly NAD+/NADH coupled reactions. The release or consumption of NADH in the area of colonies was monitored on behalf of its fluorescence at 450 nm. Excitation was achieved by standard “black-light” UV tubes (340–360 nm). The visible fluorescence signal was recorded using a CCD-camera. We got excellent results for the screening of threonine aldolases and esterases and were able to show the principle utility for amidase, nitrilase, nitrile hydratase, hydroxynitrile lyase and benzaldehyde dehydrogenase active colonies. 相似文献