共查询到20条相似文献,搜索用时 9 毫秒
1.
There is substantial evidence that crosstalk between the proliferation and Ca2+-signaling pathways plays a critical role in the regulation of normal physiological functions as well as in the pathogenesis of a variety of abnormal processes. In non-excitable cells, intracellular Ca2+ is mobilized through inositol 1,4,5-trisphosphate sensitive Ca2+ channels (IP3R) expressed on the endoplasmic reticulum. Here we report that mTOR, a point of convergence for signals from mitogenic growth factors, nutrients and cellular energy levels, phosphorylates the IP3R-2, the predominant isoform of IP3R in AR4-2J cells. Pretreatment with the mTOR inhibitor rapamycin, decreased carbachol-induced Ca2+ release in AR4-2J cells. Rapamycin also decreased IP3-induced Ca2+ release in permeabilized AR4-2J cells. We also showed that IGF-1 potentiates carbachol-induced Ca2+ release in AR4-2J cells, an effect that was prevented by rapamycin. Rapamycin also decreased carbachol-induced Ca2+ release in HEK 293A cells in which IP3R-1 and IP3R-3 had been knocked down. These results suggest that mTOR potentiates the activity of IP3R-2 by a phosphorylation mechanism. This conclusion supports the concept of crosstalk between Ca2+ signaling and proliferation pathways and thus provides another way by which intracellular Ca2+ signals are finely encoded. 相似文献
2.
Inositol 1,4,5-trisphosphate (IP3) was found to release Ca2+ from presynaptic nerve endings (synaptosomes) made permeable with saponin. ATP-dependent Ca2+ uptake was carried out until equilibrium was reached. Addition of IP3 produced a rapid release of Ca2+, which was complete within 60 sec, followed by Ca2+ reaccumulation to the original level in 5–7 min. Cholinergic receptor stimulation with muscarine also produced a similar Ca2+ release from synaptic endoplasmic reticulum. Ca2+ release by IP3 was not detectable in the absence of the mitochondrial inhibitors oligomycin or sodium azide. Reaccumulation of Ca2+ was prevented by the presence of vanadate, a potent inhibitor of Ca2+/Mg2+ ATPase. Half maximal and near complete release of Ca2+ took place at 0.4 M and 3 M IP3 concentrations, respectively. These studies demonstrate for the first time IP3 mobilization of Ca2+ from endoplasmic reticulum within synaptic plasma membranes. 相似文献
3.
High affinity Ins(1,4,5)P3-binding sites of permeabilized hepatocytes are probably the ligand recognition sites of the receptors that mediate the effects of Ins91,4,5)P3 on intracellular Ca2+ mobilization. We have now solubilized these sites from rat liver membranes in the zwitterionic detergent, CHAPS, and shown that the solubilized bind Ins(1,4,5)P3 with an affinity (Kd = 7.26 ± 0.52 nM, Hill coefficient H = 1.05 ± 0.06) similar to that of the sites in native membranes (Kd = 6.02 ± 0.02). ATP and a range of inositol phosphates (Ins(2,4,5)P3 Ins(4,5)P2, and inositol 1,4,5-trisphosphorothioate) also bound with similar affinities to the native and solubilized sites. Solubilization of the liver InsP3 receptor will allow its further characterization, purification, and comparison of its properties with those of InsP3 receptors already purified from cerebellum and smooth muscle. 相似文献
4.
Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family 总被引:1,自引:0,他引:1
Yamazaki H Nozaki H Onodera O Michikawa T Nishizawa M Mikoshiba K 《Biochemical and biophysical research communications》2011,(4):754-758
Spinocerebellar ataxia type 15 (SCA15) is a group of human neurodegenerative disorders characterized by a slowly progressing pure cerebellar ataxia. The inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) is an intracellular IP3-induced Ca2+ release channel that was recently identified as a causative gene for SCA15. In most case studies, a heterozygous deletion of the IP3R1 gene was identified. However, one Japanese SCA15 family was found to have a Pro to Leu (P1059L) substitution in IP3R1. To investigate the effect of the P1059L mutation, we analyzed the channel properties of the mutant human IP3R1 by expressing it in an IP3R-deficient B lymphocyte cell line. The P1059L mutant was a functional Ca2+ release channel with a twofold higher IP3 binding affinity compared to wild-type IP3R1. The cooperative dependence of the Ca2+ release activity of the mutant on IP3 concentration was reduced, but both wild-type and mutant receptors produced similar B cell receptor-induced Ca2+ signals. These results demonstrate that the Ca2+ release properties of IP3R1 are largely unaffected by the P1059L mutation. 相似文献
5.
Shibao K Fiedler MJ Nagata J Minagawa N Hirata K Nakayama Y Iwakiri Y Nathanson MH Yamaguchi K 《Cell calcium》2010,48(6):315-323
The inositol 1,4,5-trisphosphate receptor (InsP3R) mediates Ca(2+) signaling in epithelia and regulates cellular functions such as secretion, apoptosis and cell proliferation. Loss of one or more InsP3R isoform has been implicated in disease processes such as cholestasis. Here we examined whether gain of expression of InsP3R isoforms also may be associated with development of disease. Expression of all three InsP3R isoforms was evaluated in tissue from colorectal carcinomas surgically resected from 116 patients. Type I and II InsP3Rs were seen in both normal colorectal mucosa and colorectal cancer, while type III InsP3R was observed only in colorectal cancer. Type III InsP3R expression in the advancing margins of tumors correlated with depth of invasion, lymph node metastasis, liver metastasis, and TNM stage. Heavier expression of type III InsP3R also was associated with decreased 5-year survival. shRNA knockdown of type III InsP3R in CACO-2 colon cancer cells enhanced apoptosis, while over-expression of the receptor decreased apoptosis. Thus, type III InsP3R becomes expressed in colon cancer, and its expression level is directly related to aggressiveness of the tumor, which may reflect inhibition of apoptosis by the receptor. These findings suggest a previously unrecognized role for Ca(2+) signaling via this InsP3R isoform in colon cancer. 相似文献
6.
7.
《Cell calcium》2020
Inositol 1,4,5 trisphosphate receptors (ITPRs) are a family of endoplasmic reticulum Ca2+ channels essential for the control of intracellular Ca2+ levels in virtually every mammalian cell type. The three isoforms (ITPR1, ITPR2 and ITPR3) are highly homologous in amino acid sequence, but they differ considerably in terms of biophysical properties, subcellular localization, and tissue distribution. Such differences underscore the variety of cellular responses triggered by each isoform and suggest that the expression/activity of specific isoforms might be linked to particular pathophysiological states. Indeed, recent findings demonstrate that changes in expression of ITPR isoforms are associated with a number of human diseases ranging from fatty liver disease to cancer. ITPR3 is emerging as the isoform that is particularly important in the pathogenesis of various human diseases. Here we review the physiological and pathophysiological roles of ITPR3 in various tissues and the mechanisms by which the expression of this isoform is modulated in health and disease. 相似文献
8.
C. Jane Hanson Martin D. Bootman Clark W. Distelhorst Richard J.H. Wojcikiewicz H. Llewelyn Roderick 《Cell calcium》2008,44(3):324-338
Cell survival is promoted by the oncoprotein Bcl-2. Previous studies have established that one of the pro-survival actions of Bcl-2 is to reduce cellular fluxes of Ca(2+) within cells. In particular, Bcl-2 has been demonstrated to inhibit the release of Ca(2+) from the endoplasmic reticulum. However, the mechanism by which Bcl-2 causes reduced Ca(2+) release is unclear. In the accompanying paper [C.J. Hanson, M.D. Bootman, C.W. Distelhorst, T. Maraldi, H.L. Roderick, The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect, Cell Calcium (2008)], we described that only stable expression of Bcl-2 allowed it to work in a pro-survival manner whereas transient expression did not. In this study, we have employed HEK-293 cells that stably express Bcl-2, and which are, therefore, protected from pro-apoptotic stimuli, to examine the effect of Bcl-2 on Ca(2+) homeostasis and signalling. We observed that Bcl-2 expression decreased the Ca(2+) responses of cells induced by application of submaximal agonist concentrations. Whereas, decreasing endogenous Bcl-2 concentration using siRNA potentiated Ca(2+) responses. Furthermore, we found that Bcl-2 expression reduced mitochondrial Ca(2+) uptake by raising the threshold cytosolic Ca(2+) concentration required to activate sequestration. Using a number of different assays, we did not find any evidence for reduction of endoplasmic reticulum luminal Ca(2+) in our Bcl-2-expressing cells. Indeed, we observed that Bcl-2 served to preserve the content of the agonist-sensitive Ca(2+) pool. Endogenous Bcl-2 was found to interact with inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) in our cells, and to modify the profile of InsP(3)R expression. Our data suggest that the presence of Bcl-2 in the proteome of cells has multiple effects on agonist-mediated Ca(2+) signals, and can abrogate responses to submaximal levels of stimulation through direct control of InsP(3)Rs. 相似文献
9.
Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease 总被引:1,自引:0,他引:1
The Bcl-2 protein, best known for its ability to inhibit apoptosis, interacts with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel to regulate IP3-mediated Ca2+ release from the endoplasmic reticulum. This review summarizes the current state of knowledge regarding the interaction of Bcl-2, and also its homologue Bcl-xl, with the IP3R and how these interactions regulate Ca2+ signaling. The dual role of these interactions in promoting prosurvival Ca2+ signals, while at the same time inhibiting proapoptotic Ca2+ signals, is discussed. Moreover, this review will elucidate the recently recognized importance of the Bcl-2-IP3R interaction in human disease. 相似文献
10.
Ca(2+) is a highly versatile second messenger that plays a key role in the regulation of many cell processes. This versatility resides in the fact that different signals can be encoded spatio-temporally by varying the frequency and amplitude of the Ca(2+) response. A typical example of an organized Ca(2+) signal is a Ca(2+) wave initiated in a given area of a cell that propagates throughout the entire cell or within a specific subcellular region. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3) R) is responsible for the release of Ca(2+) from the endoplasmic reticulum. IP(3) R activity can be directly modulated in many ways, including by interacting molecules, proteins, and kinases such as PKA, PKC, and mTOR. In the present study, we used a videomicroscopic approach to measure the velocity of Ca(2+) waves in bovine aortic endothelial cells under various conditions that affect IP(3) R function. The velocity of the Ca(2+) waves increased with the intensity of the stimulus while extracellular Ca(2+) had no significant impact on wave velocity. Forskolin increased the velocity of IP(3) R-dependent Ca(2+) waves whereas PMA and rapamycin decreased the velocity. We used scatter plots and Pearson's correlation test to visualize and quantify the relationship between the Ca(2+) peak amplitude and the velocity of Ca(2+) waves. The velocity of IP(3) R-dependent Ca(2+) waves poorly correlated with the amplitude of the Ca(2+) response elicited by agonists in all the conditions evaluated, indicating that the velocity depended on the activation state of IP(3) R, which can be modulated in many ways. 相似文献
11.
《Cell calcium》2020
Cytoplasmic Ca2+ is a pivotal regulator of IP3R activity. It is however controversial whether the [Ca2+] in the Endoplasmic Reticulum lumen also directly regulates channel function. We highlight a recent paper that demonstrates that luminal [Ca2+] potently inhibits IP3R activity. This regulation occurs indirectly by an interaction mediated through a binding partner, likely Annexin 1A. 相似文献
12.
A model explaining quantal Ca2+ release as an intrinsic property of the inositol 1,4,5-trisphosphate (IP3) receptor has been put forward. The model is based on the hypothesis that the IP3 receptor can catalyze a transformation of the IP, molecule differing from its conventional metabolism. A simple kinetic mechanism is considered, in which IP3-induced Ca2+ channel opening is followed by the step of IP3 conversion and channel closure. Examination of the resulting mathematical model shows that it can reproduce well both partial release of stored Ca2+ and the same responsiveness to subsequent IP3 additions. On incorporation of an additional closed state of the channel, the model describes also a time-dependent channel inactivation at a high IP3 dose. Temperature sensitivity of the catalytic step accounts for the reported elimination of quantal responses and inactivation at low temperature. The transformation product is surmised to be a positional or stereo isomer of IP3. 相似文献
13.
Developmental and Regional Studies of the Metabolism of Inositol 1,4,5-Trisphosphate in Rat Brain 总被引:2,自引:4,他引:2
Anne M. Heacock Edward B. Seguin Bernard W. Agranoff 《Journal of neurochemistry》1990,54(4):1405-1411
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development. 相似文献
14.
The type I inositol 1,4,5-trisphosphate (IP(3)) receptor is selectively down-regulated in several neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and ischemia, all conditions in which apoptotic neuronal loss occurs. In the present study, we used a neuronal cell line, human neuroblastoma SH-SY5Y cells, to investigate whether the levels of IP(3) receptor are changed during apoptosis in these cells. Following induction of apoptosis by staurosporine, the immunoreactivity of the type I IP(3) receptor in microsome preparations from SH-SY5Y cells was reduced within 2 h, with a further reduction during subsequent hours. Immunoblot analyses, using antibodies to poly(ADP-ribose) polymerase and spectrin breakdown products, revealed proteolysis of these caspase-3 substrates within 3 h, confirming that IP(3) receptor cleavage is an early consequence of apoptosis. In vitro incubation of SH-SY5Y microsomes or immunopurified IP(3) receptor from rat cerebellum with recombinant caspase-3 led to generation of immunoreactive breakdown products similar to those observed in intact cells, suggesting that the type I IP(3) receptor is a potential substrate for caspase-3. Preincubation of the neuroblastoma cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-fluoromethyl ketone prevented IP(3) receptor degradation. These results show that the type I IP(3) receptor is a substrate for caspase-3 in neuronal cells and indicate that apoptotic down-regulation of IP(3) receptor levels may contribute to the pathology of neurodegenerative conditions. 相似文献
15.
《Cell calcium》2020
We highlight a recent paper which documents the important role that Ca2+ release through type-1 Inositol 1,4,5-trisphosphate receptor (IP3R1) plays in the acute regulation by glucagon of gluconeogenesis in hepatocytes. The specificity is likely the result of discrete localization close to mitochondria and PKA-dependent phosphorylation of IP3R1 which enhances Ca2+ release. 相似文献
16.
17.
Fukatsu K Bannai H Inoue T Mikoshiba K 《Biochemical and biophysical research communications》2006,342(2):573-576
Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP(3)R1 is CTT14aa. 相似文献
18.
Carol A. Sheppard Peter B. Simpson Alan H. Sharp Frederick C. Nucifora Christopher A. Ross †G. David Lange James T. Russell 《Journal of neurochemistry》1997,68(6):2317-2327
Abstract: We have examined the mechanisms that underlie Ca2+ wave propagation in cultured cortical astrocytes. Norepinephrine evoked Ca2+ waves in astrocytes that began at discrete initiation loci and propagated throughout the cell by regenerative amplification at a number of cellular sites, as shown by very high Ca2+ release rates at these regions. We have hypothesized previously that domains displaying elevated Ca2+ release kinetics in astrocytes may correspond to sites of high inositol 1,4,5-trisphosphate receptor (InsP3 R) density. To examine this possibility, we compared the distribution pattern of endoplasmic reticulum (ER) and InsP3 Rs with Ca2+ release kinetics in subcellular regions during propagation of norepinephrine-evoked waves. 3,3'-Dihexyloxacarbocyanine iodide staining revealed that the ER in astrocytes exists as a meshwork of membranes extending throughout the cells, including fine processes. A specific antibody directed against type 2 InsP3 Rs (InsP3 R2) detected a 260-kDa band in western blotting of astrocyte membranes. Immunocytochemistry using this antibody stained the entire ER system in a punctate, variegated manner. When Ca2+ responses and InsP3 R2 immunofluorescence were compared in the same cell, domains of elevated Ca2+ response kinetics (high amplitude and rapid rate of rise) showed significant positive correlation with high local intensity of InsP3 R2 staining. It appears, therefore, that specializations in the ER responsible for discrete local Ca2+ release sites that support regenerative wave propagation include increased levels of InsP3 R2 expression. 相似文献
19.
Peter B. Simpson Stefan R. Nahorski R. A. John Challiss 《Journal of neurochemistry》1996,67(1):364-373
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed. 相似文献
20.
Vermassen E Fissore RA Nadif Kasri N Vanderheyden V Callewaert G Missiaen L Parys JB De Smedt H 《Biochemical and biophysical research communications》2004,319(3):888-893
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献