首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

2.
3.
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.  相似文献   

4.
5.
6.
Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-induced oxidative stress on IRP-1. Treatment of murine B6 fibroblasts with menadione sodium bisulfite (MSB), a redox cycling drug, causes a modest activation of IRP-1 to bind to IREs within 15-30 min. However, IRE binding drops to basal levels within 60 min. Surprisingly, a remarkable loss of both IRE binding and aconitase activities of IRP-1 follows treatment with MSB for 1-2 h. These effects do not result from alterations in IRP-1 half-life, can be antagonized by the antioxidant N-acetylcysteine, and regulate IRE-containing mRNAs; the capacity of iron-starved MSB-treated cells to increase transferrin receptor mRNA levels is inhibited, and MSB increases the translation of a human growth hormone indicator mRNA bearing an IRE in its 5'-untranslated region. Nonetheless, MSB inhibits ferritin synthesis. Thus, menadione-induced oxidative stress leads to post-translational inactivation of both genetic and enzymatic functions of IRP-1 by a mechanism that lies beyond the "classical" Fe-S cluster switch and exerts multiple effects on cellular iron metabolism.  相似文献   

7.
8.
9.
Human iron regulatory protein-1 (IRP-1) is a bifunctional protein that regulates iron metabolism by binding to mRNAs encoding proteins involved in iron uptake, storage, and utilization. Intracellular iron accumulation regulates IRP-1 function by promoting the assembly of an iron-sulfur cluster, conferring aconitase activity to IRP-1, and hindering RNA binding. Using protein footprinting, we have studied the structure of the two functional forms of IRP-1 and have mapped the surface of the iron-responsive element (IRE) binding site. Binding of the ferritin IRE or of the minimal regulatory region of transferrin receptor mRNA induced strong protections against proteolysis in the region spanning amino acids 80 to 187, which are located in the putative cleft thought to be involved in RNA binding. In addition, IRE-induced protections were also found in the C-terminal domain at Arg-721 and Arg-728. These data implicate a bipartite IRE binding site located in the putative cleft of IRP-1. The aconitase form of IRP-1 adopts a more compact structure because strong reductions of cleavage were detected in two defined areas encompassing residues 149 to 187 and 721 to 735. Thus both ligands of apo-IRP-1, the IRE and the 4Fe-4S cluster, induce distinct but overlapping alterations in protease accessibility. These data provide evidences for structural changes in IRP-1 upon cluster formation that affect the accessibility of residues constituting the RNA binding site.  相似文献   

10.
Using highly purified recombinant mitochondrial aconitase, we determined the kinetics and mechanisms of inactivation mediated by nitric oxide (*NO), nitrosoglutathione (GSNO), and peroxynitrite (ONOO(-)). High *NO concentrations are required to inhibit resting aconitase. Brief *NO exposures led to a reversible inhibition competitive with isocitrate (K(I)=35 microM). Subsequently, an irreversible inactivation (0.65 M(-1) s(-1)) was observed. Irreversible inactivation was mediated by GSNO also, both in the absence and in the presence of substrates (0.23 M(-1) s(-1)). Peroxynitrite reacted with the [4Fe-4S] cluster, yielding the inactive [3Fe-4S] enzyme (1.1 x 10(5) M(-1) s(-1)). Carbon dioxide enhanced ONOO(-)-dependent inactivation via reaction of CO(3)*(-) with the [4Fe-4S] cluster (3 x 10(8) M(-1) s(-1)). Peroxynitrite also induced m-aconitase tyrosine nitration but this reaction did not contribute to enzyme inactivation. Computational modeling of aconitase inactivation by O(2)*(-) and *NO revealed that, when NO is produced and readily consumed, measuring the amount of active aconitase remains a sensitive method to detect variations in O(2)*(-) production in cells but, when cells are exposed to high concentrations of NO, aconitase inactivation does not exclusively reflect changes in rates of O(2)*(-) production. In the latter case, extents of aconitase inactivation reflect the formation of secondary reactive species, specifically ONOO(-) and CO(3)*(-), which also mediate m-aconitase tyrosine nitration, a footprint of reactive *NO-derived species.  相似文献   

11.
12.
13.
14.
Iron regulatory protein-1 (IRP-1) is a cytosolic RNA-binding protein that is a regulator of iron homeostasis in mammalian cells. IRP-1 binds to RNA structures, known as iron-responsive elements, located in the untranslated regions of specific mRNAs, and it regulates the translation or stability of these mRNAs. Iron regulates IRP-1 activity by converting it from an RNA-binding apoprotein into a [4Fe-4S] cluster protein exhibiting aconitase activity. IRP-1 is widely found in prokaryotes and eukaryotes. Here, we report the biochemical characterization and regulation of an IRP-1 homolog in Caenorhabditis elegans (GEI-22/ACO-1). GEI-22/ACO-1 is expressed in the cytosol of cells of the hypodermis and the intestine. Like mammalian IRP-1/aconitases, GEI-22/ACO-1 exhibits aconitase activity and is post-translationally regulated by iron. Although GEI-22/ACO-1 shares striking resemblance to mammalian IRP-1, it fails to bind RNA. This is consistent with the lack of iron-responsive elements in the C. elegans ferritin genes, ftn-1 and ftn-2. While mammalian ferritin H and L mRNAs are translationally regulated by iron, the amounts of C. elegans ftn-1 and ftn-2 mRNAs are increased by iron and decreased by iron chelation. Excess iron did not significantly alter worm development but did shorten their life span. These studies indicated that iron homeostasis in C. elegans shares some similarities with those of vertebrates.  相似文献   

15.
The 5' end of porcine mitochondrial aconitase mRNA contains an iron responsive element (IRE)-like secondary structure (T. Dandekar, R. Stripecke, N. K. Gray, B. Goosen, A. Constable, H. E. Johansson, and M. W. Hentze (1991) EMBO J. 10, 1903-1909). A protein from a liver extract binds to a mitochondrial aconitase RNA probe and supports the identification of this sequence as an IRE. Purified cytosolic aconitase but not the mitochondrial enzyme binds to this IRE as well as to a ferritin IRE. All forms of cytosolic aconitase, [4Fe-4S] enzyme, [3Fe-4S] enzyme and apoenzyme bind with similar affinity. A Kd of 0.25 nM was calculated for the apoaconitase-IRE interaction from Scatchard analysis. These results support the conclusion that cytosolic aconitase is an IRE-binding protein which may regulate translation of mitochondrial aconitase mRNA.  相似文献   

16.
Iron and oxygen (O2) are intimately associated in many well characterized patho-physiological processes. These include oxidation of the [4Fe-4S] cluster of mitochondrial aconitase and inactivation of this Krebs cycle enzyme by the superoxide anion (O2*-), a product of the one-electron of reduction O2. In contrast to the apparent toxicity of this reaction, the biological consequences of O2*- -mediated inactivation of the cytosolic counterpart of mitochondrial aconitase, commonly known as iron regulatory protein 1 (IRP1), are not clear. Apart from its ability to convert citrate to iso-citrate, IRP1 in its apo-form binds to iron-responsive elements in the untranslated regions of mRNAs coding for proteins involved in iron metabolism, to regulate their synthesis and thus control the cellular homeostasis of this metal. Here, we show that in superoxide dismutase 1 (SOD1) knock-out mice, lacking Cu,Zn-SOD, an enzyme that acts to reduce the concentration of O2*- mainly in cytosol, not only is aconitase activity of IRP1 inhibited but the level of IRP1 is also strongly decreased. Despite such an evident alteration in IRP1 status, SOD1-deficient mice display a normal iron metabolism phenotype. Our findings clearly show that under conditions of O2*- -mediated oxidative stress, IRP1 is not essential for the maintenance of iron metabolism in mammals.  相似文献   

17.
Duan X  Yang J  Ren B  Tan G  Ding H 《The Biochemical journal》2009,417(3):783-789
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.  相似文献   

18.
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.  相似文献   

19.
Beef heart aconitase, as isolated under aerobic conditions, is inactive and contains a [3Fe-4S]1+ cluster. On incubation at pH greater than 9.5 (or treatment with 4-8 M urea) the color of the protein changes from brown to purple. This purple form is stable and can be converted back in good yield to the active [4Fe-4S]2+ form by reduction in the presence of iron. Active aconitase is converted to the purple form at alkaline pH only after oxidative inactivation. The Fe/S2- ratio of purple aconitase is 0.8, indicating the presence of [3Fe-4S] clusters. The number of SH groups readily reacting with 5,5'-dithiobis(2-nitrobenzoic acid) is increased from approximately 1 in the enzyme as isolated to 7-8 in the purple form, indicating a partial unfolding of the protein. On conversion of inactive aconitase to the purple form, the EPR signal at g = 2.01 (S = 1/2) is replaced by signals at g = 4.3 and 9.6 (S = 5/2). M?ssbauer spectroscopy shows that purple aconitase has high-spin ferric ions, each residing in a tetrahedral environment of sulfur atoms. The three iron sites are exchange-coupled to yield a ground state with S = 5/2. Analysis of the data within a spin coupling model shows that J13 congruent to J23 and 2 J12 less than J13, where the Jik describe the antiferromagnetic (J greater than 0) exchange interactions among the three iron pairs. Comparison of our data with those reported for synthetic Fe-S clusters (Hagen, K. S., Watson, A. D., and Holm, R. H., (1983) J. Am. Chem. Soc. 105, 3905-3913) shows that purple aconitase contains a linear [3Fe-4S]1+ cluster, a structural isomer of the S = 1/2 cluster of inactive aconitase. Our studies also show that protein-bound [2Fe-2S] clusters can be generated under conditions where partial unfolding of the protein occurs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号